Skip to main content

Table 4 The crop, stress, and analysis technique used to describe severity measurement using visible spectrum (RGB) image analysis with symptom segmentation. The superscript numbers cross-reference the “Reference” with the “Analysis software/technique” and “Symptom measured” for each study. For example, in the first row ‘Color Transformations’ and ‘filtering’ were used only by Camargo and Smith, and ‘Scion image’ only by Wijekoon. Both measured ‘Area affected’

From: From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy

CropaAnalysis software/techniqueSymptom measuredReferences
AlfalfaColor transformations8, filtering8, Scion Image38Area affected8,38Camargo and Smith (2009)8, Wijekoon et al. (2008)38
AppleCNN37Severity37Wang et al. (2017)37
BananaColor transformations8, filtering8Area affected8,16Camargo and Smith (2009)8
BeanMathematical morphology3,4,5, color transformations5, color analysis9, thresholding31, Scion Image38Area affected4,5,9,31,38, Deformation9Barbedo (2016a, 2016b)4, Barbedo (2017)5, Contreras-Medina et al. (2012)9, Škaloudová et al. (2006)31, Wijekoon et al. (2008)38
CassavaMathematical morphology4,5, color transformations5, ImageJ22, support vector classifier25, k-nearest neighbors25, extra trees25Area affected4,5,22, Severity levels25Barbedo (2016a, 2016b)4, Barbedo (2017)5, Mutka et al. (2016)22, Mwebaze and Owomugisha (2016)25
CitrusMathematical morphology4,5, color transformations5, Assess 1.06,7Area affected4,5,6,7, Number of lesions6Barbedo (2016a, 2016b)4, Barbedo (2017)5, Bock et al. (2008a, 2008b)6, Bock et al. (2009a, 2009b)7
CoconutMathematical morphology4,5, color transformations5Area affected4,5Barbedo (2016a, 2016b)4, Barbedo (2017)5
CoffeeColor transformations3,5,29, mathematical morphology3,4,5, thresholding29, CNN41Area affected3,4,5,29, Severity levels41Barbedo (2014)3, Barbedo (2016a, 2016b)4, Barbedo (2017)3, Price et al. (1993)29, Esgario et al. (2019)41
CottonMathematical morphology4,5, color transformations5Area affected4,5Barbedo (2016a, 2016b)4, Barbedo (2017)5
CucumberColor comparison2, self-organizing map + linear perceptron13,17, Photoshop 6.0 + Matrox Inspector 2.218, Superpixel clustering + expectation maximization39Area affected2,13,17,18,39Bakr (2005)2, Goclawski et al. (2012)13, Kuźniak et al. (2014)17, Kwack et al. (2005)18, Zhang et al. (2019)39
GrapevineMathematical morphology4,5, color transformations5, ImageJ27Area affected4,5,27Barbedo (2016a, 2016b)4, Barbedo (2017)5, Peressotti et al. (2011)27
MaizeAssess 2.01, mathematical morphology4, 5, color transformations5,8, filtering8, thresholding20, Scion Image38Area affected1,4,5,20,38, Pustule count1Bade and Carmona (2011)1, Barbedo (2016a, 2016b)4, Barbedo (2017)5, Camargo and Smith (2009)8, Martin and Rybicki (1998)20, Wijekoon et al. (2008)38
OatColor transformations19, thresholding19,36Area affected19,36Macedo-Cruz et al. (2011)19, Tucker and Chakraborty (1997)36
Passion fruitColor transformations3,5, mathematical morphology3,4,5Area affected3,4,5Barbedo (2014)3, Barbedo (2016a, 2016b)4, Barbedo (2017)5
PumpkinColor analysis9,17Area affected9,17, Deformation9Contreras-Medina et al. (2012)9, Kuźniak et al. (2014)17
RiceMathematical morphology4, fractal dimensions + fuzzy C-means40Area affected4, Severity40Barbedo (2016a, 2016b)4, Zhou et al. (2013)40
SoybeanColor transformations3,5,30, mathematical morphology3,4,5,30, DCNN12, Linear Discriminant Analysis + Support Vector Machine23Area affected3,4,5,30, Severity12,23, number of lesions30Barbedo (2014)3, Barbedo (2016a, 2016b)4, Barbedo (2017)5, Ghosal et al. (2018)12, Naik et al. (2017)23, Shrivastava et al. (2015)30
Sugar beetColor transformations3, mathematical morphology3, Assess 2.010Area affected3,10Barbedo (2014)3, De Coninck et al. (2012)10
SugarcaneMathematical morphology4,5, color transformations5,26, thresholding26Area affected4,5,26Barbedo (2016a, 2016b)4, Barbedo (2017)5, Patil and Bodhe (2011)26
TomatoColor transformations3, mathematical morphology3, Self-organizing maps + Bayesian classifier14, thresholding18,28, Assess 2.2435Area affected3,14,18,28,35Barbedo (2014)3, Hernández-Rabadán et al. (2014)14, Lindow and Webb (1983)18, Pethybridge and Nelson (2015)28, Sun et al. (2014)35
WheatMathematical morphology4,5, color transformations5, Assess 2.011, Chan-Vese model + PCA15, Assess 1.021,32, ImageJ33,34, Scion Image38Area affected4,5,11,15,21,32,38, Number of lesions33,34Barbedo (2016a, 2016b)4, Barbedo (2017)5, El Jarroudi et al. (2015)11, Hu et al. (2017)15, Mirik et al. (2006)21, Steddom et al. (2005)32, Stewart and McDonald (2014)33, Stewart et al. (2016)34, Wijekoon et al. (2008)38
  1. aThere are a some crops with only one associated reference: Arabidopsis thaliana (Laflamme et al. 2016), avocado (Kerguelen and Hoddle 1999), barley (Kokko et al. 2000), black pepper (Barbedo 2016a, 2016b), bracken fern (Lindow and Webb 1983), California buckeye (Lindow and Webb 1983), cashew (Barbedo 2016a, 2016b), clover (Wijekoon et al. 2008), collards (Pethybridge and Nelson 2015), dahlia (Bakr 2005), goldenrod (Goodwin and Hsiang 2010), green bean (Bakr 2005), kale (Barbedo 2016a, 2016b), lilac (Pethybridge and Nelson 2015), lily-of-the-valley (Goodwin and Hsiang 2010), lima bean (Pethybridge and Nelson 2015), mallow (Pethybridge and Nelson 2015), melon (Barbedo 2016a, 2016b), palm tree (Barbedo 2016a, 2016b), papaya (Barbedo 2016a, 2016b), peanut (Barbedo 2014), pepper (Contreras-Medina et al. 2012), Phalaenopsis seedling (Huang 2007), phlox (Goodwin and Hsiang 2010), plane tree (Clément et al. 2015), potato (Wijekoon et al. 2008), rose (Bakr 2005), squash (Bakr 2005), subterranean clover (Kruse et al. 2014), sunflower (Tucker and Chakraborty 1997), sweet cherry (Olmstead et al. 2001), sycamore (Lindow and Webb 1983), turfgrass (Horvath and Vargas 2005), vigna (Bakr 2005), watermelon (Pethybridge and Nelson 2015), yellow starthistle (Berner and Paxson 2003)
\