Skip to main content
Fig. 5 | Phytopathology Research

Fig. 5

From: A non-flagellated biocontrol bacterium employs a PilZ-PilB complex to provoke twitching motility associated with its predation behavior

Fig. 5

Identification of key amino residues of PilZLe3639 or PilBLe0708 that required for their binding determined by the BACTH system. a The W71, but not the Y24 residue of PilZLe3639 was essential for its binding with PilBLe0708. The Y24 and W71 residues were site-mutated respectively, and cloned into pKT25 vector. The coding region of PilBLe0708 was cloned into pUT18c. b All the test residues of PilBLe0708, including P208, Y209A, K333, E397 were not involved in the binding PilBLe0708 with PilZLe3639. “+”, a positive control (pUT18c-Zip &pKT25-Zip), “-”, a negative control (pUT18c &pKT25). c A schematic model for the PilZLe3639-PilBLe0708 complex regulating T4P-dependent twitching motility in Lysobacter enzymogenes OH11. PilBLe0708 is an ATPase responsible for pilus extension. PilZLe3639 may activate (indicated by a dashed arrow) pilus extension through interacting with PilBLe0708. The red cycle indicated the W71 reside of PilZLe3639 which is the key amino acid critical for its role in twitching motility and interaction with PilBLe0708. PilCLe0709 is an integral membrane protein functioning as the platform protein of pilus, while PilQLe2803 acts as the outer membrane secretin pore (Xia et al. 2018)

Back to article page