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Abstract 

Soybean cyst nematode (SCN, Heterodera glycines) is widely considered as the model plant-parasitic nematode, which 
secretes effector proteins to manipulate host responses. In this study, we cloned a dorsal gland-expressed effector 
protein SCN-27D09 that belongs to the same family as Hg10A07 in SCN. We used the model plant pathogen rice 
blast fungus (Magnaporthe oryzae) to quickly predict and characterize the functions of SCN-27D09. By using M. oryzae 
secretion system in barley, we confirmed that the signal peptide of SCN-27D09 has secretory activity and can guide 
the protein into the host cells. Heterologous expression of SCN-27D09 in M. oryzae significantly enhanced the suscep-
tibility of barley to M. oryzae. SCN-27D09 can inhibit Bax-triggered cell death when expressed in Nicotiana benthami-
ana. Overexpression of SCN-27D09 in soybean hairy root also increased the susceptibility of soybean plants to SCN. 
Moreover, yeast two-hybrid and firefly luciferase complementation imaging assays showed that SCN-27D09 interacts 
with a soybean plant kinase GmIPK-2. Functional characterization of GmIPK-2 revealed its positive role in soybean 
resistance, indicating that SCN-27D09 might compromise the function of GmIPK-2 to facilitate nematode infection. 
Our results not only uncover the biological role of SCN-27D09 in suppressing plant defense responses and therefore 
promoting nematode parasitism, but also reaffirm the potential application of the model plant pathogenic fungus M. 
oryzae in investigating the pathogenic roles of candidate effectors of phytonematodes.
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Background
There are more than 4100 nematode species worldwide 
that cause serious damage to hundreds of crops (Decrae-
mer et  al. 2006). Soybean cyst nematode (SCN, Heter-
odera glycines), an obligate and sedentary endoparasitic 
nematode, is widely considered as the model plant nema-
tode (Niblack et  al. 2006). SCN has caused huge eco-
nomic losses in soybean production in the United States 
and Canada over two decades (Jones et  al. 2013; Allen 
et  al. 2017; Bandara et  al. 2020). Effectors mostly pro-
duced through esophageal glands play a key role in the 
plant–nematode interaction (Davis et  al. 2008). Plant 
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nematodes penetrate plant cell wall and secrete viru-
lent effectors, such as cell wall-degrading enzymes, into 
plant cells via stylets. The physiological state and defense 
response of the host plant are thus manipulated by the 
nematode to facilitate its own development and repro-
duction (Lilley et al. 2005; Khan and Khan 2021).

With the development and application of various 
techniques, such as monoclonal antibodies (Smant 
et  al. 1998), mass spectrometry (Filipecki et  al. 2021), 
expressed sequence tags (Alkharouf et al. 2004), genom-
ics, and transcriptomics, a large number of effectors have 
been identified from plant nematodes. The functions of 
these effectors are characterized by molecular biology 
and other methods, and it was found that they have three 
major functions in the compatible plant–nematode inter-
action. Firstly, plant nematodes secrete cellulases, such as 
β-1, 4-endoglucanases, which mostly belong to glycosyl 
hydrolase family 5 (GHF5), pectate lyases such as PEL-
2, and expansins such as HaEXPB2, to degrade or soften 
plant cell walls and promote nematode parasitism (Smant 
et al. 1998; Geric Stare et al. 2011; Liu et al. 2016). Sec-
ondly, some nematode effectors can mimic host proteins 
or regulate gene expression in host plants to promote the 
formation of feeding sites. For example, HgSYV46 has 
the same function as its homolog CLAVATA3/ESR (CLE) 
in Arabidopsis thaliana, which can positively regulate 
the development of feeding sites by regulating cell pro-
liferation (Wang et al. 2005; Guo et al. 2017). The effector 
proteins HsIPT, Hs-Tyr, and HsPDI promote the forma-
tion of syncytia by regulating host cell division, hormone 
homeostasis, and redox balance, respectively (Siddique 
et al. 2015; Habash et al. 2017; Lilley et al. 2018). Thirdly, 
plant nematodes utilize effectors such as Ha18764 to 
hijack the signal transduction processes of PAMP-trig-
gered immunity (PTI) and effector-triggered immunity 
(ETI) in plants. Hs10A06 was demonstrated to regu-
late ROS levels and SA signaling pathway to achieve the 
purpose of inhibiting plant defense responses (Hewezi 
et al. 2010; Yang et al. 2019). At present, the interaction 
mechanism between nematode effectors and host plants 
is being gradually elucidated.

Because transformation systems are still immature 
in some plants, researchers often investigate nema-
tode effectors using their homologous effectors in sugar 
beet cyst nematode (BCN, H. schachtii) and the cor-
responding host plant A. thaliana. The effector protein 
10A07, originally identified from the cDNA library of 
SCN esophageal gland cells, is such an example. After 
Hs10A07 is secreted into the A. thaliana cytoplasm, it 
interacts with the interacting plant kinase (IPK) and is 
phosphorylated at Ser-144 and Ser-231 to promote its 
trafficking to the nucleus. Then the effector associates 
with an auxin-responsive protein IAA16 to interfere with 

the expression of auxin response factors and auxin sign-
aling, thereby promoting the parasitism of nematodes 
(Hewezi et al. 2015).

To predict and characterize the pathogenic roles of 
potential nematode effectors on a large scale, we per-
formed studies taking advantage of a model plant patho-
gen rice blast fungus (Magnaporthe oryzae). Herein, we 
cloned a dorsal gland-expressed nematode effector-cod-
ing gene 27D09 (referred to as SCN-27D09 in the study), 
which belongs to the same gene family as 10A07, as an 
example. We confirmed the interaction between SCN-
27D09 and GmIPK-2, a homologous protein of Arabidop-
sis IPK. In addition, we deployed the M. oryzae-mediated 
delivery system to study the functions of this nematode 
effector. We expressed SCN-27D09 heterologously in M. 
oryzae and proved that the signal peptide at the N-termi-
nus of SCN-27D09 can guide the secretion of the effec-
tor into host plant cells, and found that SCN-27D09 can 
enhance M. oryzae virulence to host plants. We further 
used the soybean hairy root transformation system to 
demonstrate the functions of SCN-27D09 in parasitism. 
Taken together, our findings highlight the pathogenic 
roles of SCN-27D09 and reaffirm the potential applica-
tion of the model plant pathogenic fungus M. oryzae in 
functional study of other phytonematode effectors.

Results
SCN‑27D09 is secreted into host cells
SCN-27D09 (GenBank accession no. AAM50038) was 
first identified as a homologous protein of the BCN effec-
tor Hs10A07 (GenBank accession no. KP728937) (Gao 
et  al. 2003; Hewezi et  al. 2015). The sequence of SCN-
27D09 has an open reading frame of 708 bp, encoding a 
protein of 235 aa with an N-terminal signal peptide (1–15 
aa) and a nuclear localization signal (NLS) peptide (18–
93 aa). There is no conserved domain and transmem-
brane helix in SCN-27D09. Protein sequence alignment 
revealed that at least four proteins (i.e., 20G04, 10A07, 
6E07, and 13A06) are homologous to SCN-27D09 in SCN 
(Additional file 1: Figure S1). We used the digoxygenin-
labeled antisense cDNA probe of SCN-27D09 to detect 
the localization of its transcripts. In  situ hybridization 
assay revealed strong signals in the dorsal gland of nema-
tode at parasitic stages (Fig. 1). To clarify whether the sig-
nal peptide of SCN-27D09 is functional, we used the M. 
oryzae-mediated live cell imaging system to localize this 
effector in barley (Park et al. 2012; Zhang et al. 2018). The 
pRP27-SCN-27D09-mCherryNLS vector carrying SCN-
27D09 fused in-frame with the mCherry protein and a 
NLS peptide (mCherryNLS) was transformed into the 
M. oryzae wild-type strain P131. The mCherryNLS could 
facilitate the visualization of translocated fluorescent 
protein by concentrating the fluorescence signals in the 
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nucleus. The integration of pRP27-SCN-27D09-mCher-
ryNLS into the P131 genome was validated through PCR 
(Additional file  1: Figure S2). Obvious nuclear localiza-
tion of red fluorescence signals was detected in conidia 
and vegetative hyphae of the transformants express-
ing SCN-27D09-mCherryNLS (Fig.  2a), suggesting that 
this fusion protein was functional. Interestingly, obvi-
ous red fluorescence signals were detected in the nuclei 
of nearly 40% of the infected barley epidermis cells after 
infection with M. oryzae transformants expressing SCN-
27D09-mCherryNLS; while less than 10% of the infected 
barley epidermis cells were detected with weak red fluo-
rescence signals after infection with the control M. ory-
zae transformants expressing mCherryNLS under the 
same conditions (Fig.  2b, c). Taken together, these find-
ings suggested that the signal peptide of SCN-27D09 
could effectively guide its secretion into the host cells 
during M. oryzae infection.

SCN‑27D09 suppresses Bax‑triggered cell death 
in Nicotiana benthamiana
To explore the potential role of SCN-27D09 in plant 
defense suppression, we tested the ability of SCN-27D09 
to suppress Bax (an apoptosis-promoting protein)-
triggered cell death in N. benthamiana. We infiltrated 
the N. benthamiana leaves with Agrobacterium tume-
faciens carrying pYBA1143-SCN-27D09 or the empty 
vector pYBA1143 for 24  h, and then infiltrated the 
leaves with Agrobacterium harboring Bax or infiltration 
buffer. Meanwhile, the A. tumefaciens strain carrying 

SCN-27D09, Bax, empty vector, or buffer was injected 
independently as control. In order to illustrate the sup-
pression effect of SCN-27D09 on Bax-triggered cell 
death, we also set a gradient (OD600 = 0.1, 0.2, 0.3, and 
0.4) for the final concentration of Bax. As expected, the 
infiltration of the empty vector pYBA1143 and then Bax 
caused significant necrosis after 4  days, whereas the 
leaves treated with the combination of SCN-27D09 and 
Bax showed reduced necrosis (Fig.  3a). Cell death sup-
pression effect was more obvious with low infiltration 
concentration of Bax. As control, only the A. tumefaciens 
strain carrying Bax caused necrosis (Fig. 3b). The results 
suggested that SCN-27D09 could suppress Bax-triggered 
cell death in N. benthamiana.

Heterologous expression of SCN‑27D09 in M. oryzae 
enhances the fungal virulence
Because SCN-27D09 could be secreted into host cells 
via M. oryzae and suppress Bax-triggered cell death in N. 
benthamiana, we wondered whether overexpression of 
SCN-27D09 would enhance the virulence of M. oryzae. 
Thus, we generated and transformed the pRP27-SCN-
27D09-GFP vector into the M. oryzae strain P131. The 
integration of pRP27-SCN-27D09-GFP into the P131 
genome was validated through PCR (Additional file  1: 
Figure S3). We then compared the virulence of the result-
ing transformants on barley leaves with a gradient dilu-
tion method. Compared with the wild-type strain P131 
and its transformants expressing GFP, three transfor-
mants expressing the SCN-27D09-GFP fusion protein 

Fig. 1  SCN-27D09 is expressed in the dorsal gland of plant-parasitic nematodes. In situ hybridization was performed to detect tissue localization of 
SCN-27D09 transcript using digoxigenin-labeled sense (a) and antisense (b, c) cDNA probes of SCN-27D09. Parasitic third- and fourth-stage juveniles 
of Heterodera glycines were used. M, metacorpus; DG, esophageal dorsal gland. Bar = 20 µm
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formed obvious larger lesions when infecting barley with 
their conidia (Fig.  4a, b). These findings suggested that 
heterologous expression of SCN-27D09 could enhance 
the virulence of M. oryzae.

SCN‑27D09 interacts with soybean GmIPK‑2
Since Hs10A07 was previously reported to interact with 
a plant kinase IPK (Hewezi et al. 2015), we hypothesized 
that SCN-27D09 might also interact with the homolo-
gous proteins of IPK from soybean. Blast analysis sug-
gested that there are three homologs of IPK in soybean, 
and one homolog of IPK named as GmIPK-2 was cloned 

in this study (Additional file  1: Figure S4). To confirm 
whether SCN-27D09 interacts with GmIPK-2, yeast 
two-hybrid assay using vectors GmIPK-2-AD and SCN-
27D09-BD was performed. As shown in Fig.  5a, yeast 
co-transformed with GmIPK-2-AD and SCN-27D09-BD 
grew well on SD/-Leu/-Trp/-His plate supplemented 
with X-α-gal, suggesting that SCN-27D09 can physi-
cally interact with GmIPK-2 in yeast. The interaction 
between SCN-27D09 and GmIPK-2 was verified by 
luciferase complementation imaging (LCI) assay. Strong 
fluorescence was observed in N. benthamiana leaves co-
expressing the GmIPK-2-NLuc and SCN-27D09-CLuc 

Fig. 2  SCN-27D09 can be secreted into host cells. a Fluorescence signals observed in conidia and hyphae of Magnaporthe oryzae transformants 
expressing mCherryNLS and SCN-27D09-mCherryNLS. Bar = 10 µm. Red fluorescence was observed in the nuclei of conidia and hyphae. b Nuclear 
localization of red fluorescent signals in epidermal cells of barley leaves infected with M. oryzae transformants expressing SCN-27D09-mCherryNLS 
but not mCherryNLS at 27 h post-inoculation (hpi). The white arrows point to the barley nuclei. Bar = 10 µm. c The percentage of M. oryzae-infected 
barley epidemic cells with red fluorescent signals accumulated in the nuclei. At least 50 M. oryzae-infected barley epidemic cells were measured for 
the strains expressing SCN-27D09-mCherryNLS or mCherryNLS. **P < 0.01



Page 5 of 11Yang et al. Phytopathology Research            (2022) 4:33 	

pair, but not in other control pairs including the GFP-
NLuc and SCN-27D09-CLuc pair and the GmIPK-2-
NLuc and GFP-CLuc pair (Fig. 5b). The luciferase activity 
of the GmIPK-2-NLuc and SCN-27D09-CLuc pair was 
also significantly higher than that of the controls (Fig. 5c). 
Taken together, these results indicated that SCN-27D09 
physically interacted with GmIPK-2.

Both SCN‑27D09 and GmIPK‑2 serve vital roles during SCN 
parasitism
To characterize the biological role of SCN-27D09 in 
SCN parasitism, Agrobacterium rhizogenes K599-medi-
ated soybean hairy root transformation system was 
used to overexpress SCN-27D09 in soybean. Gene 
expression was confirmed via reverse transcription-
quantitative PCR (RT-qPCR). At least 16 positive trans-
genic roots were inoculated with SCN, and the number 
of cysts in roots was counted and the fresh weight of 
roots was weighed at 30  days post-inoculation (dpi). 
As shown in Fig.  6a, overexpression of SCN-27D09 
increased the numbers of cysts per hairy root line and 
per gram root in comparison with the control, sug-
gesting the positive role of SCN-27D09 in nematode 
parasitism.

With the same system, overexpression of GmIPK-
2 significantly reduced the numbers of cysts per hairy 
root line and per gram root in comparison with the 
control (Fig.  6b). Meanwhile, the RNAi approach was 
further used to assay the function of GmIPK-2, and a 
303  bp conserved fragment near the N-terminal of 
GmIPK-2 was selected to construct a hairpin structure. 
In comparison with the control, obvious more cysts 
per hairy root line and per gram root were observed in 
the GmIPK-2-silencing lines (Fig.  6c). Taken together, 
the overexpression and RNAi assays suggested that 
GmIPK-2 played positive roles in host resistance 
against nematodes.

Discussion
In the arms race between nematodes and host plants, 
successful parasitism of plants by nematodes is attrib-
uted to the molecular dialogue between nematode effec-
tors and their corresponding targets in hosts. At present, 
the most studied effectors of plant-parasitic nematodes 
are proteins with N-terminal signal peptide, which are 
believed to be secreted through the classic endoplas-
mic reticulum-Golgi protein secretion system (Lee et al. 
2004) and enter the host cell cytoplasm via the  nema-
tode stylet (Wang et  al. 2010; Hewezi and Baum 2013; 
Hewezi et al. 2015). Plant-parasitic nematodes cannot be 
genetically modified by traditional transformation meth-
ods, and current researches mainly rely on in vitro RNA 
interference and host-induced gene silencing techniques 
to functionally characterize nematode effectors. How-
ever, due to the low silencing efficiency and poor stability 
combined with the presence of off-target risk, these tech-
niques have greatly reduced the reliability of functional 
verification (Jackson et al. 2003). Moreover, it is difficult 
to perform genetic transformation in some crops. To pre-
dict and characterize the pathogenic roles of potential 

Fig. 3  SCN-27D09 suppresses Bax-triggered cell death in Nicotiana 
benthamiana. a Transient expression of SCN-27D09 suppressed cell 
death induced by Bax. The corresponding combinations used for 
infiltration of N. benthamiana leaves were indicated on the left panel. 
b Transient expression of Bax induced cell death. Treatments for 
infiltration of N. benthamiana leaves were shown on the left panel. 
In a and b, the data (0.1, 0.2, 0.3, and 0.4) indicate the OD600 value of 
Agrobacterium tumefaciens carrying Bax. Numbers at the lower-right 
corner of the pictures represent the number of leaves showing cell 
death suppression out of the number of leaves agroinfiltrated

Fig. 4  Heterologous expression of SCN-27D09 in Magnaporthe oryzae 
enhances the virulence of the fungus. a Symptoms on detached 
barley leaves inoculated with spore suspensions (5 × 104 conidia/
mL) of the wild-type M. oryzae P131 strain or transformants at 5 dpi. b 
Lesion area on barley leaves shown in a. Data are means ± standard 
deviation. N = 3 (t test between SCN-27D09-GFP and control values; 
*P < 0.05, **P < 0.01)
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nematode effectors on a large scale, we deployed an effec-
tor delivery platform assisted with a model plant patho-
genic fungus M. oryzae.

Here, we demonstrated that SCN-27D09 could be 
transferred to host cells using M. oryzae-mediated live 
cell imaging method (Park et al. 2012; Zhang et al. 2018). 
In the past few years, there have been some reports on 
the investigation of signal peptide secretion activity of 
nematode effectors using the rice blast system. Ha18764 
from Heterodera avenae and MiISE5 from Meloidogyne 
incognita can be secreted into the host cells via this sys-
tem (Shi et al. 2018; Yang et al. 2019). We also used this 
system to investigate the function of SCN-27D09. Heter-
ologous expression of SCN-27D09 significantly enhanced 
the virulence of M. oryzae on barley, in consistent with 
the increased susceptibility to SCN by overexpression 
of SCN-27D09 in soybean. Because M. oryzae could be 

genetically manipulated very easily, this effector delivery 
system provides a useful method for large-scale func-
tional characterization of phytonematode effectors.

Bax is a Bcl-2 family protein that can induce cell death 
in tobacco leaves, and the cell death phenotype it induced 
is physiologically similar to the hypersensitive response 
in plants (Lacomme and Santa Cruz 1999). The ability 
of effectors to inhibit Bax-triggered cell death has been 
regarded as one of the indicators of suppression of basal 
immunity in host plants (Jamir et  al. 2004; Dou et  al. 
2008; Wang et  al. 2011). A number of cyst nematode 
effectors have been shown to inhibit Bax-triggered cell 
death, such as Ha-annexin (Chen et  al. 2015), HaVAP1 
and HaVAP2 (Luo et  al. 2019), and HaCRT1 (Liu et  al. 
2020). Ha18764 was reported to not only suppress cell 
death triggered by various elicitors, but also suppress cell 
death induced by putative effectors of H. avenae (Yang 

Fig. 5  SCN-27D09 interacts with GmIPK-2. a SCN-27D09 interacted with GmIPK-2 in yeast two-hybrid assay. The interaction between GmIPK-2-AD 
and SCN-27D09-BD activated the expression of HIS3 and LacZ reporter genes. The colony of positive control turned blue. b SCN-27D09 interacted 
with GmIPK-2 in luciferase complementation imaging (LCI) assay. GmIPK-2-NLuc and SCN-27D09-CLuc were transiently expressed in N. benthamiana 
by co-infiltration. The combination of GFP-NLuc and GFP-CLuc was used as negative control. The luminescence was detected with a low-light 
cooled CCD imaging apparatus at 36 h after infiltration. c Quantification of the LUC activity in the leaves shown in b. N = 3 (t test between 
GmIPK-2-NLuc/SCN-27D09-CLuc and control group values; **P < 0.01)
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et al. 2019). In this study, the expression of SCN-27D09 
partially inhibited Bax-triggered cell death, indicating 
that SCN-27D09 may be involved in suppressing plant 
innate immune responses. Plants have also evolved a 
multi-layered immune system to subvert nematode eva-
sion, whether SCN-27D09 is involved in this multiple-
layer defense suppression remains to be examined.

Previous studies showed that BCN effector 10A07 
interacted with the plant kinase IPK in A. thaliana 

cytoplasm, and phosphorylation of 10A07 at Ser-144 and 
Ser-231 mediated its nuclear translocation (Hewezi et al. 
2015). The two phosphorylation sites are conserved in 
10A07 and 27D09. Here, we confirmed that SCN-27D09 
physically interacted with GmIPK-2. The results sug-
gested the sequence conservation during the evolution 
of nematodes and hosts. Furthermore, we found that 
silencing of GmIPK-2 resulted in enhanced susceptibil-
ity, while overexpression of GmIPK-2 increased soybean 
resistance against SCN. This indicates that GmIPK-2 
plays an important role in the defense response of soy-
bean to SCN infection, which seems to be contradictory 
to a previous report on the role of IPK in Arabidopsis, in 
which the phosphorylation of 10A07 by IPK promoted 
nematode parasitism by interfering with auxin signaling 
(Hewezi et  al. 2015). This might indicate functional dif-
ferentiation and diversification of IPKs in different plants. 
Although IPK can be targeted by both 10A07 and 27D09, 
the underlying molecular mechanism for the interactions 
might be distinct and needs further elucidation.

Conclusions
Identification and functional characterization of nema-
tode effectors are essential to better understand the 
mechanisms underlying nematode virulence and host 
defense, which could potentially provide strategies for 
designing future crops with improved nematode resist-
ance. We demonstrated the important roles of SCN 
effector SCN-27D09 in suppressing host defense and 
promoting nematode parasitism. GmIPK-2 is directly 
targeted by SCN-27D09. Heterologous expression of 
nematode effector-coding genes in the model plant 
pathogenic fungus M. oryzae can be used as a strategy 
to study these effectors, providing more perspectives for 
the study of pathogenic roles of candidate effectors from 
phytonematodes.

Methods
In situ hybridization
In situ hybridization was performed with third-stage 
(Par-J3) and fourth-stage (Par-J4) juveniles of H. glycines 
as described previously (Jaouannet et  al. 2018). Nema-
todes were isolated according to de Boer et  al. (1998). 
Digoxigenin-labeled sense and antisense cDNA probes of 
SCN-27D09 were synthesized using a DIG DNA labeling 
kit (Roche, USA). Hybridization was carried out at 42 °C 
overnight and the signals were detected using anti-DIG 
antibody conjugated with alkaline phosphatase (1:500). 
Nematode samples were photographed with an Olympus 
BX63 light microscope. The primers used for probe prep-
aration are listed in Additional file 2: Table S1.

Fig. 6  GmIPK-2 plays a positive role against soybean cyst nematode. 
a The numbers of cysts per hairy root line (left panel) and per 
gram root (middle panel) in Williams 82 (control) and SCN-27D09 
overexpression line (OE-SCN-27D09). Relative expression level of 
SCN-27D09 was shown on the right panel. b The numbers of cysts 
per hairy root line and per gram root in Williams 82 (control) and 
GmIPK-2 overexpression line (OE-GmIPK-2). Relative expression level 
of GmIPK-2 was shown on the right panel. c The numbers of cysts 
per hairy root line and per gram root in Williams 82 (control) and 
GmIPK-2 RNAi line (Ri-GmIPK-2). Relative expression level of GmIPK-2 
was shown on the right panel. Data are means ± standard error. 
Significant differences were calculated by Student’s t test (*P < 0.05, 
**P < 0.01, ***P < 0.001)
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Functional analysis of the signal peptide of SCN‑27D09 
in barley leaves
In order to prove whether the signal peptide of SCN-
27D09 has a secretory function, we generated the pRP27-
SCN-27D09-mCherryNLS vector, and the empty vector 
pRP27-mCherryNLS was used as a negative control. The 
two vectors were individually transformed into the pro-
toplasts of the M. oryzae wild-type strain P131 and the 
positive transformants were cultured on oatmeal tomato 
agar (OTA) after fluorescence screening. Spore suspen-
sions were prepared with 0.025% Tween 20 and adjusted 
to a concentration of 1 × 105 conidia/mL. The conidia 
were spotted on the back of 5-day-old barley leaves, 
which were subsequently incubated for 27 h in a humid 
and dark environment at 28  °C (Liu et  al. 2021). The 
nuclei were stained with 1  µg/mL 4’,6-diamidino-2-phe-
nylindole (DAPI), and the amount of SCN-27D09 enter-
ing the barley cell nuclei was counted and photographed 
with a fluorescence microscope (Nikon ECLIPSE 90i). 
Filter sets used were as follows: mCherry (excitation 
510–560  nm; emission 575–590  nm) and DAPI (excita-
tion 330–380  nm; emission 400–420  nm) (Zhang et  al. 
2018).

Molecular identification of M. oryzae transformants 
harboring SCN‑27D09
In order to verify the positive transformants of M. oryzae, 
we extracted the genomic DNA of transformants for PCR 
verification. Mycelia were harvested into a tube contain-
ing 500 μL DNA extraction solution (1 M KCl, 100 mM 
Tris–HCl, and 10 mM EDTA, pH 8.0) and ground with a 
homogenizer (MP FastPrep®-24). After centrifugation at 
2,400 g for 5 min at room temperature, the supernatant 
was collected and 300 μL isopropanol was added. After 
centrifugation, the pellet was dissolved in 30 μL sterile 
water. The extracted DNA can be directly used as a tem-
plate for PCR assay. Actin was used as a reference gene 
for PCR detection (Kong et al. 2012). All primers used for 
PCR are listed in Additional file 2: Table S1.

Cell death analysis
Empty vector pYBA1143 and vectors carrying SCN-
27D09, Bax, and silencing suppressor p19 were indi-
vidually transformed into A. tumefaciens EHA105. To 
determine the suppression of Bax-triggered cell death 
by SCN-27D09, equal volume of suspensions carry-
ing SCN-27D09 or empty vector (OD600 = 1.0), and p19 
(OD600 = 0.5) were mixed and infiltrated into the N. 
benthamiana leaves. After 24 h, A. tumefaciens suspen-
sion carrying Bax (OD600 = 0.1, 0.2, 0.3, and 0.4) or infil-
tration buffer was injected into the same site. At the same 
time, the A. tumefaciens strain carrying SCN-27D09, 
Bax, pYBA1143, or buffer was injected alone as control. 

The experiments were repeated twice with similar results. 
The pictures were taken at 4  days after Bax infiltration 
(Lakhssassi et al. 2020; Liu et al. 2020).

Virulence assay
In order to test the virulence of M. oryzae strains in 
which the SCN effector is heterologously expressed, we 
generated the pRP27-SCN-27D09-GFP vector and sub-
sequently transformed the resulting vector or the empty 
vector pRP27-GFP into the wild-type strain P131. Three 
positive transformants of SCN-27D09 were used for sub-
sequent inoculation. Conidia grown on OTA medium for 
7  days were washed with 0.025% Tween 20 and filtered 
through two layers of lens wiping paper, and 10 µL spore 
suspension (5 × 104 conidia/mL) was drop-inoculated 
onto a detached leaf of barley plants (one-week-old). 
Three leaves were used for each transformant. Sam-
ples were incubated in a moist cassette at 28 °C for 24 h, 
and then maintained in a 12 h light/12 h dark cycle for 
4–6  days. The pictures were taken at 6 dpi and the leaf 
areas of 9 lesions on 3 leaves were measured using Image 
J software. GraphPad Prism 9.0.0 was used to analyze the 
data (Yang et al. 2010; Gao et al. 2019) by Student’s t test. 
The experiment was performed three times with similar 
results.

Yeast two‑hybrid assay
GmIPK-2 from soybean and SCN-27D09 from soybean 
cyst nematode were cloned and fused into pGADT7 and 
pGBKT7 vectors, respectively. Competent cells of yeast 
strain AH109 were prepared by the LiAc method, and 
then the recombinant bait vectors and AD vectors were 
transformed into AH109 using the PEG/LiAc method. 
After incubation on SD-Leu/-Trp and SD-Leu/-Trp/-
His plates at 30  °C for 3  days, single colonies that grew 
well were cultured on SD-Leu/-Trp/-His plate contain-
ing X-α-gal. The colonies containing interacting proteins 
turned blue.

Luciferase complementation imaging (LCI) assay
The LCI assay was performed as described previously 
(Chen et  al. 2008). Using homologous recombination, 
SCN-27D09−SP and GmIPK-2 were constructed into 
pCAMBIA1300-CLuc and pCAMBIA1300-HA-NLuc, 
respectively. At the same time, GFP was sub-cloned 
into the two vectors as negative control. All vectors 
were transformed into A. tumefaciens strain GV3101 
and cultured overnight. After centrifugation at 1,900  g 
for 10  min, the pellet was re-suspended in infiltra-
tion buffer containing 100  μM acetosyringone, 10  mM 
2-(N-morpholino) ethanesulfonic acid, and 10  mM 
MgCl2 to reach OD600 = 1.0. The two strains were mixed 
at a volume ratio of 1:1 and then allowed to stand in the 
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dark at room temperature for 3–5  h. Then the suspen-
sions were injected into N. benthamiana leaves that have 
grown for about 4 weeks. After 36 h, 1 mM D-luciferin 
was applied to the back of the leaves. The luminescence 
was detected with CCD imaging system (Tanon 5200). 
Punch the leaves with a puncher (0.6 cm in diameter) and 
place them in a 96-well white ELISA plate containing 50 
μL sterile water for fluorescence scanning with a lumi-
nometer (SpectraMax i3x). Draw a bar graph based on 
the scanned value to show the intensity of fluorescence 
generated by luciferase after decomposing the substrate 
and to judge the interaction degree between the target 
proteins.

Soybean hairy root transformation
The overexpression vector was constructed by directly 
cloning the GmIPK-2 and SCN-27D09 full-length cDNA 
into the binary expression vector pCAMBIA1300-OE 
using XbaI and SalI restriction sites. To generate silenc-
ing vectors, a 303-bp fragment of GmIPK-2 was cloned 
into pMD18-T and then into the RNAi binary vec-
tor using AscI/SwaI and BamHI/AvrII restriction sites, 
respectively. The soybean cultivar used in this study 
is ‘Williams 82’ (W82), which is susceptible to SCN. 
SCN (HG type 0) was maintained in sand: soil mixture 
(v/v = 3:1) in a 28  °C greenhouse. Cysts were extracted 
from infested soil at 35 dpi using sieves and centrifuga-
tion. Second-stage juveniles (J2) were hatched from the 
eggs by incubation with water at 28 °C for 2–3 days. Seeds 
of W82 cultivar were planted in vermiculite for 4  days. 
A. rhizogenes strain K599 was used to inoculate the soy-
bean hypocotyls as described previously (Guo et al. 2015; 
Toth et  al. 2016). After 3  days of co-cultivation in the 
dark, the explants were grown under the light for about 
10 days until hairy roots developed from the hypocotyls. 
The GFP-positive roots were selected under an Olympus 
SZX16 fluorescence stereomicroscope. The plants were 
transplanted to sand: soil mixture (v/v = 3:1) to recover 
for 5  days. Then 300–400 pre-parasitic J2s were inocu-
lated to each plant. The number of cysts and root fresh 
weight were evaluated at 30 dpi. The experiments were 
performed three times with at least 16 independent hairy 
roots for each treatment. The data were analyzed by Stu-
dent’s t test using GraphPad Prism 9.0.0.

RNA extraction and RT‑qPCR
Total RNA was extracted from GFP-positive soybean 
transgenic roots using TRIpure reagent (Aidlab, Beijing, 
China) and first-strand cDNA was synthesized using 
HiScriptII QRT SuperMix (Vazyme, Nanjing, China) 
following the manufacturer’s instructions. Gene-spe-
cific primers were designed and quantitative PCR was 
performed using iCycler iQ 5 thermal cycler (Bio-Rad, 

California, USA) real-time PCR system and AceQ qPCR 
SYBR Green Master Mix (Vazyme, Nanjing, China). Soy-
bean SKP16 was used as the internal control (Wang et al. 
2021). A dissociation curve was generated to verify that a 
single product was amplified. The experiments were per-
formed twice. Relative gene expression was determined 
using 2–ΔΔCt method compared with the internal control. 
The data were analyzed by Student’s t test using Graph-
Pad Prism 9.0.0. All primers used for RT-qPCR are listed 
in Additional file 2: Table S1.
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