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Abstract 

Fusarium head blight (FHB) caused by Fusarium species, seriously threatens the safety of wheat (Triticum aestivum) 
production. Resistant cultivars and fungicides are frequently used to control these FHB pathogens. However, Fusarium 
species have been adapting the current FHB control approaches in a manner that raises concern for future FHB 
control strategies, which could lead to a greater risk of FHB outbreaks. In this study, a total of 521 strains of Fusarium 
were isolated from Sichuan province of China, to investigate the diversity of Fusarium species and the genes associ‑
ated with their adaptation. Seven species were identified based on molecular markers and morphological analysis. 
The virulence assays showed that Fusarium asiaticum (Fa) and Fusarium graminearum (Fg) were the two major causal 
agents of FHB, with high virulence and more frequent isolates. Fungicide resistance analysis showed that four isolates 
had developed the resistance to carbendazim, and four isolates had developed the resistance to tebuconazole. Of 
note, two point‑mutation variants (F200Y and E198Q) occurred in the β2-tubulin gene, leading to the carbendazim 
resistance. The landscape of genomic diversity was analyzed through whole‑genome sequencing, revealing a total 
of 182,811 and 430,733 variants (including: single nucleotide polymorphisms, SNP, insertion and deletion, Indel, 
and structure variation, SV) among the Fa and Fg isolates, respectively. In addition, potential alterations in gene 
function (15.22%) were predicted among Fg variants. These alterations offer potential helps for the Fusarium spe‑
cies to adapt to various managements of FHB, which may increase risks in developing fungicide‑resistant isolates. 
However, these annotated genetic variants are valuable resources for further genetic and genomic studies, as well 
as potential markers to assist disease risk assessment.
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Background
Wheat (Triticum aestivum) is one of the most important 
staple crops in the world. However, Fusarium head blight 
(FHB) seriously threatens the safety of wheat production 
worldwide. It mainly infects the wheat head and absorbs 
nutrients, resulting in considerable yield reduction and 
the deterioration of flour quality (Bottalico and Perrone 
2002; Salgado et al. 2015). After infection of FHB, myco-
toxins, including NIV, DON, 3-ADON, and 15-ADON, 
are produced by Fusarium in wheat seeds (Cheat et  al. 
2015). These mycotoxins can cause anorexia, diarrhea, 
vomiting, and gastrointestinal bleeding in animals, and 
cannot be easily removed by temperature or chemical 
and physical treatments (Marin et  al. 2013; Thapa et  al. 
2021). A great deal of efforts has been devoted to avoid 
the exposure of mycotoxin. However, human or animal 
consuming of food contaminated by mycotoxins still 
occasionally occurs (Al-Jaal et  al. 2019). Due to global 
warming and cropping system changes, frequent FHB 
outbreaks have caused significant economic losses in 
wheat globally, and the situation appears getting worse 
(Vaughan et al. 2016; Xu et al. 2021).

FHB pathogens are complex and diverse. More than 19 
phylogenetically distinct species have been reported to 
cause FHB on wheat (Leslie and Summerell 2006; Van der 
Lee et  al. 2015). Different climatic conditions and crop 
rotations can lead to differences in the distribution and 
predominance of the pathogens. For instance, Fusarium 
graminearum (Fg) and Fusarium asiaticum (Fa) are the 
major pathogens under warmer climate conditions (Xu 
et al. 2021), while Fusarium culmorum, Fusarium nivale, 
and Fusarium poae are the major pathogens under cooler 
climate conditions (Dweba et al. 2017). Fa is the predomi-
nant species in the southern wheat-rice rotation regions 
of China, but Fg is the predominant species in the North-
ern China where wheat and maize rotation is very com-
mon (Zhang et al. 2012). Furthermore, Fusarium species 
isolated from different regions show differences in mor-
phology, pathogenicity, and fungicide resistance (Xu et al. 
2021; Wang et al. 2022). Therefore, an investigation of the 
diversity of Fusarium is valuable for evaluating the sever-
ity of FHB.

Various control strategies have been used to prevent 
Fa and Fg from infecting wheat, including timely fungi-
cide application, resistance germplasm deployment, and 
special cultural practices. However, the genetic diversity 
of Fa and Fg can counteract the efficiency of these con-
trol strategies (Zeller et al. 2004; Talas et al. 2015a; Yang 
et al. 2020). There is a line of evidence that some Fa and 
Fg have adapted to FHB control strategies, especially fun-
gicides (e.g., Tebuconazole, TEC, Carbendazim, MBC) 
(de Chaves et al. 2022). For example, point mutations at 
β1-tubulin (FGSG_09530) and β2-tubulin (FGSG_06611) 

have been reported to be associated with resistance to 
MBC in Fusarium (Chen et al. 2015). Spolti et al. (2014) 
isolated a Fg strain (Gz448NY11) from Steuben county, 
New York, USA, showing a resistance to TEC. In Anhui 
province of China, 8.23% of single-spore isolates of Fa 
were found to be resistant to MBC, and five types of point 
mutations (F167Y, E198L, E198K, F200Y, and E198Q) in 
the β2-tubulin gene conferred resistance to MBC (Chen 
et al. 2015). Previous studies have reported that CYP51-
A (FGSG_04092) and CYP51-B (FGSG_01000) genes are 
related to the resistance to TEC in Fusarium by point 
mutations that cause overexpression of CYP51-A and 
CYP51-B genes (Ma et  al. 2006; Qian et  al. 2018). Qian 
et al. (2018) confirmed that the point mutation (Y137H) 
of CYP51-B led to the resistance to TEC by site-directed 
mutagenesis in Fg strain PH-1. A total of 150 TEC-
resistant Fg strains were obtained from different areas of 
Henan province in China in 2018–2020, and six resist-
ant strains possessed an amino acid mutation (S169T) in 
CYP51-B (Chen et al. 2021). Notably, there are no reports 
showing that overexpression of CYP51-A or CYP51-B 
could cause the resistance to TEC in Fusarium.

Whole-genome sequencing can provide information 
on genetic variation, such as single nucleotide polymor-
phisms (SNP), insertion and deletion (Indel), and struc-
ture variation (SV). Since the genome information of Fg 
is available, more than 10,000 SNPs have been identified, 
which are preferentially located at the ends of chromo-
somes or in inner chromosomal locations (Cuomo et al. 
2007). Walkowiak et  al. (2016) found 704,566 SNPs and 
Indels among 10 closely related members of the Fg spe-
cies complexed with different mycotoxin genotypes. 
Similarly, Laurent et  al. (2017) found 242,756 high-con-
fidence genetic variants in six French isolates of Fg via 
whole-genome sequencing. Nevertheless, a large number 
of genetic variants suggests that a small number of iso-
lates is not sufficient to explain all phenotypic, patho-
genicity, and fungicide resistance variants. Hence, more 
isolates of Fa and Fg are required for discovering the 
genetic diversity, and the variants are potential mark-
ers for tracking the spreading of Fusarium populations, 
and aiding the assessing of the risk of FHB outbreaks 
(Oghenekaro et al. 2021).

The complex climate conditions and cultural practices 
in Sichuan province are conducive to the emergence of 
various Fusarium species (Huang and Ye 2005), which 
makes fungicide control strategies being less effective. 
In this study, we aimed to survey Fusarium species in 
Sichuan province, and to identify major pathogens of 
FHB using virulence assays. All Fusarium isolates can be 
used to investigate genetic variations by whole-genome 
sequencing. The fungicides MBC and TEC were used to 
verify the link between genetic variation and the diversity 
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of biological functions, which could help us understand 
the diversity of Fusarium species and the genes associ-
ated with their adaptations to counteract current and 
future FHB control strategies, and for building the pre-
diction model for potential FHB outbreaks.

Results
Identification of Fusarium species from wheat spikelet 
with visible FHB signs
A total of 521 strains of Fusarium species were obtained 
from wheat spikelet with visible FHB symptoms (Addi-
tional file 1: Table S1). The distribution of all isolates was 
shown in Fig. 1a. One or more molecular markers from 
each isolate were successfully obtained by PCR ampli-
fication and sequencing. These isolates had more than 
98% sequence similarity with Fa, Fg, F. meridionale, F. 
avenaceum, F. tricinctum, F. flocciferum, or F. prolifera-
tum (Additional file 1: Table S1). The identities of these 
seven Fusarium species were further confirmed by mor-
phological analyses based on the descriptions of Leslie 
and Summerell (2006) (Fig.  1b). The frequency assays 
for each Fusarium species showed that 68.58% of them 
were Fa species and 27.59% were Fg species. Other spe-
cies (including F. meridionale, F. avenaceum, F. tricinc-
tum, F. flocciferum, and F. proliferatum) account for only 
3.83% of the total isolates (Fig. 1c). The Fa isolates were 
the major pathogenic strains in the year of 2021. The Fg 

isolates were the major pathogenic strains in the year of 
2022 (Fig.  1c). Therefore, Fa and Fg are the pathogens 
with a high frequency of FHB in Sichuan province.

Pathogenicity of Fusarium species
Our results showed that all isolates tested were able to 
infect the wheat spikelet (Fig.  2 and Additional file  1: 
Table  S1). However, significant differences in infectivity 
were observed between different Fa or Fg isolates, where 
F. meridionale, F. avenaceum, F. tricinctum, F. lateritium, 
F. flocciferum, and F. proliferatum showed lower infectiv-
ity when compared with Fa and Fg isolates (Fig.  2 and 
Additional file 1: Table S1). These results indicate that Fa 
and Fg are highly pathogenic to wheat, despite there is a 
virulence diversity among different Fa or Fg isolates.

Fungicide resistance in Fa and Fg isolates
Due to the reduced effectiveness of MBC and TEC on 
controlling the FHB in Sichuan province, all Fa and Fg 
isolates were analyzed using a higher concentration of 
MBC (50  μg/mL) and TEC (36  μg/mL) than previously 
reported (Yin et  al. 2009; Qian et  al. 2018; Chen et  al. 
2021). The results showed that 50 μg/mL of MBC com-
pletely lost the ability to inhibit the growth of Fa Lz189, 
Fa Lz263, Fa Lz503, and Fg Lz114 isolates, although the 
reference Fg isolate PH-1 could not grow. However, the 
growth of Fa Lz136, Fa Lz167, Fa Lz201, and Fg Lz179 

Fig. 1 Identification of FHB in Sichuan province of China. a Distribution of the obtained Fusarium isolates in Sichuan province. b Morphological 
analyses of Fusarium species on PDA plates at the 7th day after inoculation (Scale bars = 1 cm). c Frequency of each Fusarium species. The detail 
information of each isolate can be found in Additional file 1: Table S1
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isolates was partially inhibited in 36  μg/mL TEC com-
pared with Fg PH-1 which could not grow either (Fig. 3a 
and Additional file 1: Table S1). Thus, Fa Lz189, Fa Lz263, 
Fa Lz503, and Fg Lz114 have evolved resistance to MBC, 
and Fa Lz136, Fa Lz167, Fa Lz201, and Fg Lz179 have 
evolved resistance to TEC.

Mutation of β2‑tubulin is associated with MBC resistance
Point mutations in the β1-tubulin and β2-tubulin genes 
have been reported to be associated with resistance to 
MBC in Fusarium species (Chen et  al. 2015). The open 
reading frames of the β1-tubulin and β2-tubulin genes 
were identified by PCR and sequencing. The results 
showed that β1-tubulin gene had no changes when com-
pared with the reference gene sequence. For the open 
reading frame of the β2-tubulin gene, point mutations at 
codons 198 (GAG → GCG, E198A) and 200 (TTC → TAC, 
F200Y) in Fa Lz189, Fa Lz263, and Fa Lz503, and a point 
mutation at codon 198 (GAG → GCG, E198A) were found 
in Fg Lz114 (Fig. 3b). Other sensitive strains were further 
checked, but they did not carry these mutations (data not 
shown). Thus, the mutations of β2-tubulin at codons 198 
(GAG → GCG, E198A) and 200 (TTC → TAC, F200Y) are 
related to resistance to MBC in Fa and Fg.

Mutations of CYP51‑B is associated with TEC resistance
The point mutations or overexpression of CYP51-A and 
CYP51-B genes are associated with resistance to TEC 
in Fusarium species (Ma et  al. 2006; Qian et  al. 2018). 
Therefore, the open reading frame of CYP51-A and 
CYP51-B genes were identified by PCR and sequencing. 
The results showed that CYP51-A gene had no changes 

compared with the reference gene sequence. For the 
CYP51-B gene, Fa Lz136, Fa Lz167, Fa Lz201, and Fg 
strain Lz179 showed no changes in CYP51-B gene com-
pared with the Fa reference sequence and those Fa iso-
lates that could not grow at 36 μg/mL TEC (Fig. 3c). We 
then investigated the expression of CYP51-A and CYP51-
B genes by real-time PCR in Fa strains Lz136, Fa Lz167, 
Fa Lz201, and Fg strain Lz179. The results showed that 
CYP51-A exhibited a significantly higher expression level 
than Fg PH-1, but CYP51-B showed a significantly lower 
expression level than Fg PH-1 in Fg strain Lz179 (Fig. 3d).

Genetic diversity of the Fa and Fg isolates
To determine the sequence diversity in the two spe-
cies, we sequenced the Fa and Fg isolates collected from 
Sichuan province. The whole-genome sequencing results 
showed that Fg had 99.31% genome coverage (≥ 4 ×) to 
the Fg reference genome, and Fa had 99.18% genome cov-
erage (≥ 4 ×) by alignment with the Fa reference genome. 
These results show that the Fa and Fg isolates are secured, 
and can be used for further genetic variation analysis. By 
genetic variation analysis, a total of 165,888 SNPs, 10,714 
Indels, and 6209 SVs variants were discovered in Fa iso-
lates, respectively. The details information is in Addi-
tional file 1: Table S2. SNPs were evenly distributed in all 
four chromosomes, and mainly distributed at the ends of 
the chromosomes (Fig. 4a).

Among Fg isolates, a total of 379,318 SNPs, 25,356 
Indels, and 8059 SVs were found. The detail informa-
tion is in Additional file 1: Table S3. Compared with the 
density distribution of all SNPs in the genome, SNPs 
were evenly distributed in all four chromosomes, and 

Fig. 2 Virulence assays on wheat. a Wheat heads were inoculated with conidial suspensions of Fusarium isolates. Infected wheat heads were 
photographed at 7th day after inoculation. Red arrows indicated the inoculation sites. Red dashed line marked the area of disease. b The numbers 
of infected and bleached spikelets at 7th day after inoculation. Values are means ± standard deviation of ten biological replicates per isolate. The 
isolate information was listed in Additional file 1: Table S1
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mainly distributed in chromosome 1 and 2 (Fig.  4b). 
Besides, there are 15.22% potential alterations in gene 
function in Fg isolates due to SNPs (58,674), InDels 
(2432), and SVs (4450) by nonsynonymous SNPs, early 
stop codon, loss of stop codon, frameshift mutation, 
and SV in exons (Additional file 1: Table S3).

Among all variants, Fa isolates had a lower num-
ber of variants compared with Fg isolates. There was 
no significant difference in InDels length between Fa 
and Fg isolates (Fig.  4c, d). The chromosomal inver-
sions (27.94%) were frequent discovered in the Fg iso-
lates, and chromosomal insertions of large fragments 
frequently occurred in Fa (11.97%) (Fig.  4e, f ). Nota-
bly, Fg isolates may have more variants that poten-
tially affected genetic differentiation compared with Fa 
isolates.

Discussion
FHB is caused by several Fusarium species. The deter-
mination of the distribution of Fusarium species could 
allow effective monitoring of the occurrence of FHB 
(Dweba et  al. 2017; Xu et  al. 2021). In this study, seven 
species of Fusarium involved in FHB were isolated from 
diseased wheat spikelet (Additional file  1: Table  S1), 
including Fa, Fg, F. meridionale, F. avenaceum, F. later-
itium, F. flocciferum, and F. proliferatum. Fa and Fg were 
the dominant species, which is consistent with the pre-
vious studies in Asia (Huang and Ye 2005; Van der Lee 
et al. 2015; Xu et al. 2021). F. meridionale, F. flocciferum, 
and F. proliferatum were new isolates. Similarly, F. merid-
ionale and F. proliferatum have been reported to be the 
major pathogens of maize and soybean in Sichuan prov-
ince (Chang et al. 2018; Liu et al. 2020; Wang et al. 2021). 

Fig. 3 Fa and Fg isolates showed resistance to MBC and TEC. a Mycelial growth of Fg Lz114, Fa Lz503, Fa Lz167, and Fg Lz179 on PDA plates 
with the treatments of MBC and TEC at the 7th day after inoculation (Scale bars = 1 cm). Fg PH‑1 was used as a control. CK means no addition 
of fungicide. Three biological replicates for each experiment. b Multiple protein sequence alignment of β2‑tubulin protein sequence. Black arrows 
indicate the mutation sites. c Multiple protein sequence alignment of CYP51‑B protein sequence. Fa Lz45, a control with same protein sequence, 
could not grow in 36 μg/mL TEC. d Relative expression levels of CYP51-A and CYP51-B in Fg Lz179. Mycelia were collected at 7th day after incubation 
on PDA plates supplied with 36 μg/mL TEC. There were three biological replicates. Asterisk indicates significance at P < 0.05
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All Fusarium isolates showed less pathogenicity towards 
wheat, except for Fa and Fg (Fig.  2a, b). These strains 
were isolated from spikelet of wheat which were inter-
cropped with maize or rotated in rice fields in the year 
of 2021, where the soil and diseased crop residues could 
serve as the initial infection source of Fusarium (Parry 
et al. 1995). Because the straw returning is encouraged in 
China when applying intercropping or rotation (Yan et al. 
2020), these isolates might come from the straw resi-
dues of maize, soybean, or rice that had been infected by 
Fusarium.

Because of the climatic changes, the distribution of 
Fusarium species has been altered (Zhang et al. 2012). In 
this study, the major pathogenic strains are the Fa isolates 
in 2021, and there is a change for Fg in 2022 (Fig. 1c). The 
drier conditions during the winter and warmer condi-
tions during the infection and grain-colonization period 
occurred in 2022 compared to the year of 2021. A pre-
vious study showed that Fg isolates are associated with 
drier and cooler conditions during the winter, as well 
as warmer conditions during the infection period (Xu 
et al. 2017). Thus, it suggests that climatic conditions are 
related to the distribution of Fa and Fg.

The demethylation inhibitor type of fungicides, such 
as TEC and prochloraz, are highly effective against 
Fusarium (Pasquali et al. 2020). Yin et al. (2009) showed 
that the 50% mycelial growth inhibition  (EC50) values of 
TEC-resistant isolates ranged from 0.034 to 6.235  µg/
mL in 159 isolates of Fa and Fg. Talas et al. (2015b) also 
showed that the  EC50 values of TEC-resistant isolates 
ranged from 5.4 to 62.2 µg/mL in 231 isolates. These val-
ues exhibited a normal distribution with a mean value 
of 22.2  µg/mL. So, different isolates have different  EC50 
values for TEC (Yin et  al. 2009; Talas et  al. 2015b). In 
this study, we observed that TEC at a concentration of 
36 µg/mL was unable to completely inhibit the mycelial 
growth of Fa and Fg isolates (Fig.  3a). This concentra-
tion was higher than the previously reported concentra-
tion (Yin et al. 2009; Qian et al. 2018; Chen et al. 2021). 
There is no doubt that TEC-resistant isolates are emerg-
ing in Sichuan province, which increases the risk of fun-
gicide application. Fa and Fg share similar morphological 
and molecular characteristics, toxicology, and genome 
sequences (Lee et  al. 2014; Walkowiak et  al. 2016; Yang 
et al. 2020). Lee et al. (2014) have revealed more than 80% 
nucleotide similarity between Fa and Fg in trichothecene 

Fig. 4 Genetic variation analysis in Fa and Fg isolates. a Distribution of SNPs within 0.05 Mb window size in chromosome among Fa isolates. b 
Distribution of SNPs within 0.05 Mb window size in chromosome among Fg isolates. c Distribution of InDels among Fa isolates. d Distribution 
of InDels among Fg isolates. e Distribution of SVs. Different color columns represented different type of SVs among Fa isolates. f Distribution of SVs 
length. Different color columns represented different type of SVs among Fg isolates. All detail information can be found in Additional file 1: Tables S2 
and S3
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biosynthetic genes. Walkowiak et al. (2016) showed that 
Fa is more closely related to Fg, with 93.1% sequence 
similarity of the genome. In this study, our results also 
showed that Fa and Fg isolates have similar morphol-
ogy and pathogenesis (Figs.  1, 2). However, Fg isolates 
had more variants compared with Fa isolates (Additional 
file  1: Table  S2 and Table  S3), and the distribution of 
SNPs and types of SVs were significantly different (Fig. 3). 
Thus, Fa may have a different direction of evolution com-
pared with Fg, and can adapt to different conditions.

The isolates that used to determine the sequence diver-
sity among Fa and Fg were isolated from different places 
and environments. A large number of variants may be 
linked to the polymorphism of biological functions, 
and may aid Fusarium in adapting to different stresses, 
including fungicides. The following two examples con-
firmed this assumption. Previous reports have shown 
that genetic variants in codon 198 aa and 200 aa in the 
open reading frame of β2-tubulin gene were related to 
resistance to MBC (Chen et al. 2015; Duan et al. 2015). 
The same variants were found in Fa Lz189, Fa Lz263, Fa 
Lz503, and Fg Lz114, and were confirmed by fungicide 
treatments on PDA plates (Fig.  3a). Over-expression 
of CYP51-A and specific point mutations in CYP51-B 
contributed to the TEC resistance (Ma et  al. 2006; Yin 
et  al. 2009; Qian et  al. 2018). However, the CYP51-A 
and CYP51-B did not have sequence changes compared 
with the reference gene (Fig.  3c). This finding suggests 
that genes other than the CYP51 family may be the most 
important contributors to TEC resistance (Talas et  al. 
2015b). In the current study, CYP51-A exhibited a sig-
nificantly higher expression level than Fg PH-1 (Fig. 3d). 
Compared with genome sequencing results for Fg PH-1, 
exons of the CYP51-A gene showed six non-synony-
mous SNPs for Fa, and three non-synonymous SNPs for 
Fg. Twenty SNPs of Fa and one SNP variant occurred 
upstream of the CYP51-A gene. The relationship between 
these SNP variants and over-expression of CYP51-A 
needs to be further verified in strain Fg Lz179.

Conclusions
In this study, Fa and Fg isolates have developed resist-
ance to MBC and TEC in Sichuan province (Fig. 3a and 
Additional file 1: Table S1). Because of the extensive use 
of MBC and TEC, the frequency of emerging fungicide-
resistant isolates will gradually increase (Chen et  al. 
2015, 2021). The increased resistant strains will undoubt-
edly erode the control effect of FHB. Among the genetic 
variants we discovered, 15.22% of them could potentially 
affect gene function among Fg isolates, which may change 
the biological functions (Additional file  1: Table  S3). 
Thus, genetic diversity can aid Fusarium in adapting to 
different environmental stresses and counteracting FHB 

management approaches, and increases the risk of FHB 
outbreaks. The fungicide resistance assays confirmed 
that the landscape of genomic assortment linked to the 
biological functions (Laurent et  al. 2017). Importantly, 
these 521 isolates can provide an isolate library for quick 
search of the resistance genes in Fusarium species. The 
genetic diversity data can also be used to develop special 
molecular markers to assist in FHB risk assessment.

Methods
Fungal isolates
Wheat spikelet with visible FHB signs and symptoms was 
selected from Sichuan province in the year of 2021 (FHB 
outbreak) and 2022. All wheat spikelet with visible FHB 
signs were collected from forty-three fields that were 
evenly distributed in wheat-producing areas of Sichuan 
province (Fig. 1a). Five or six wheat spikelet with visible 
FHB signs were collected from each field. The collected 
wheat spikelet with visible FHB signs were washed with 
tap water, and were cut into small pieces (approximately 
1  mm3), and surface-sterilized with 75% ethanol (v/v) for 
30  s, 1% NaClO (w/v) for 15  s, then rinsed three times 
with sterile distilled water. These pieces were placed on 
Petri dishes containing potato dextrose agar medium 
(PDA, Aoboxing Biotechnology, Beijing, China), then 
incubated at 25 ℃ for 7  days in the dark. Pure cultures 
were obtained by a single macroconidia isolation method 
described by Chang et al. (2018). Two or three single iso-
lates were randomly selected from each wheat spikelet 
with visible FHB signs for further research. All isolates 
were stored at –80℃ with 20% glycerol at Sichuan Agri-
culture University.

Molecular markers analysis
For molecular identification, total genomic DNA was 
extracted from fungal mycelia that were collected at 
the 7th day from the PDA plates by the cetyl trimethyl 
ammonium bromide (CTAB) method (Lodhi et al. 1994). 
Partial gene sequences of internal transcribed spacer 
(ITS), β-tublin, translation elongation factor 1-alpha (EF-
1α), and RNA polymerase beta large subunit II (RPB2) 
were amplified as molecular markers by PCR. Primers, 
PCR conditions, and product size are listed in Additional 
file  1: Table  S4. PCR products were sequenced in BGI 
(https:// en. genom ics. cn/), and classified by blaste in the 
FUSARIUM-ID (http:// www. fusar iumdb. org) and Fusar-
ium MLST (http:// www. cbs. knaw. nl/ Fusar ium/) database 
(Geiser et al. 2004).

Morphological analysis
Morphological characteristics of fungal species were 
identified from isolates and macroconidia based on 
previous studies (Leslie and Summerell 2006). The 

https://en.genomics.cn/
http://www.fusariumdb.org
http://www.cbs.knaw.nl/Fusarium/
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color and morphology of isolates were observed at 
the 7th day from the PDA plates. Image Java (National 
Institutes of Health, Bethesda, MD, USA) was used to 
calculate the growth rate of the hyphal area on PDA 
plates. Three biological replicates of each isolate were 
used, and F. graminearum PH-1 (Fg PH-1) was as used 
as the control (CK). Macroconidia were produced in 
carboxymethyl cellulose liquid medium at 28  °C, with 
shaking (180  rpm) for 7  days, and collected at the 7th 
day (Capellini and Peterson 1965). The shape and sep-
tum of the macroconidia were recorded using at least 
1000 conidia per isolate under a compound microscope 
(Nikon-80i, Japan).

Virulence assay
To determine if these Fusarium strains caused disease, 
41 Fa isolates, 23 Fg isolates, 3 F. meridionale isolates, 4 
F. avenaceum isolates, 3 F. tricinctum isolates, 2 F. later-
itium isolates, 3 F. flocciferum isolates, and 2 F. prolifer-
atum isolates were used for inoculation on wheat. The 
common wheat cultivar ‘shumai482’, which is suscepti-
ble to Fusarium infection, were grown in a greenhouse 
under a 16 h/8 h (day/night) cycle at 23 °C/18 °C. Plants 
were watered as necessary and fertilized before plant-
ing with 15-15-15 (N-P-K) compound fertilizer. After 
inoculation, the plants were maintained in a growth 
chamber at 25 ℃ under 16 h/8 h (day/night) cycle, with 
90% moisture for 7  days. Two florets of a single cen-
tral wheat (Triticum aestivum cv. ‘shumai482’) spikelet 
were inoculated at each point using a micropipette at 
the mid-anthesis stage with 1 ×  103 macroconidia. The 
average value of infected spikelet was used to repre-
sent the infectivity of the Fusarium isolates. Ten wheat 
spikelets were used per isolate, and Fg PH-1 was used 
as the control.

Fungicide‑resistance assay for Fa and Fg isolates
To determine Fusarium resistance to fungicides, all Fg 
and Fa isolates were cultured by transferring 5 mm diam-
eter plugs from the edge of a 3-day-old active colony to 
PDA medium. The concentrations of MBC (1.25 μg/mL) 
and TEC (36 μg/mL) that were determined to completely 
inhibit Fg PH-1 growth in PDA medium were used to 
select as resistant isolates (Additional file  2: Figure S1). 
Chen et al. (2015) reported that a concentration of 50 μg/
mL of MBC can be used to select MBC-resistant isolates. 
We then used 50 μg/mL of MBC to further confirm the 
isolates with MBC resistance. All isolates were incubated 
at 25 °C for 7 days in the dark. Three biological replicates 
were used for each strain. Resistant isolates were further 
studied.

Cloning and sequencing of β1‑tubulin and β2‑tubulin gene 
in Fa and Fg isolates
Total RNA was extracted from the mycelia of resist-
ant isolates that were grown on PDA plates for 7 days at 
25 °C, using the E.Z.N.A.® Total RNA Kit I (Omega Bio-
Tek, Norcross, GA, USA) according to the manufactur-
er’s instructions. The RNA was reverse transcribed using 
the PrimeScript™ RT Reagent Kit with genomic DNA 
Eraser (Takara, Dalian, China) following the manufac-
turer’s protocol. The cDNA sequences of β1-tubulin (Fa: 
CP088260.1_6189185 to 6,190,813; Fg: FGSG_09530), 
β2-tubulin (Fa: CP088260.1_643341 to 645053; Fg: 
FGSG_06611), CYP51-A (Fa: CP088258.1_6962848 
to 69644; Fg: FGSG_04092), and CYP51-B (Fa: 
CP088257.1_3457782 to 3459530; Fg: FGSG_01000) 
genes were amplified by PCR. Primers, PCR condi-
tions, and product size were shown in Additional file 1: 
Table S4. PCR products were sequenced in BGI (https:// 
en. genom ics. cn/). The Fg isolates sequencing results were 
aligned with the Fg PH-1 reference gene using DNA-
man 7.0 software (Lynnon Biosoft, USA). The Fa isolates 
sequencing results were aligned with the Fa KCTC 16664 
reference gene using DNAman 7.0 software (Lynnon 
Biosoft, USA).

Measure the expression levels of CYP51‑A and CYP51‑B 
in Fg isolates
The primers CYP51AF/CYP51AR and CYP51BF/
CYP51BR were used to amplify CYP51-A and CYP51-B, 
respectively. The relative expression levels of CYP51-A 
and CYP51-B were analyzed using the  2−ΔΔCt method. 
Actin (FGSG_07335) and β-tubulin (FGSG_09530) were 
used as the references to normalize the expression data. 
The Fg strain PH-1 was used as a calibrator. The qPCRs 
were performed using a MyiQ Real-Time PCR Detection 
System (Bio-Rad, Hercules, CA, USA). All the primers 
mentioned above are listed in Additional file 1: Table S4.

Sequencing and data processing
Genomic DNAs were extracted from the fungal myce-
lia of 140 Fa isolates (Additional file  1: Table  S5) that 
were cultured on PDA plates for 7  days at 25  °C, and 
the extracted DNA were equally premixed to build a 
DNA library at the Annoroad Genome company (http:// 
genome. annor oad. com/). The same process was used 
to build a DNA library from 140 Fg isolates (Additional 
file  1: Table  S5). Whole-genome sequencing was per-
formed in BGI company (https:// en. genom ics. cn/). High 
quality sequences (clean reads) were filtered as follows: 
(1) remove the adaptor-polluted reads (reads contain-
ing > 5 adapter-polluted bases); (2) remove the low-qual-
ity reads (Phred quality value < 19); (3) remove reads 

https://en.genomics.cn/
https://en.genomics.cn/
http://genome.annoroad.com/
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with the number of N bases accounting for more than 
5%. The obtained clean reads after filtering were used 
for further statistical analyses. The Fg sequences were 
aligned to the reference genome Fg PH-1 (Submitted 
NCBI sequence: GCA_000240135.3), and Fa sequences 
were aligned to the reference genome Fa KCTC 16664 
(GCA_025258505.1) using the BWA software (Li and 
Durbin 2009) and the BWA-MEM mode (Li 2013). Based 
on the alignment to the reference genome sequence, 
the software GATK (McKenna et  al. 2010) was used to 
call SNPs and Indels present in the whole genome. The 
filtering settings were as follows: SNP: QD < 2.0, Read 
Pos Rank Sum < –8.0, FS > 60.0, QUAL < 30.0, DP < 4.0, 
MQ < 40.0, Mapping quality rank sum < –12.5, and 
INDEL: QD < 2.0, Read pos rank sum < –20.0, FS > 200.0, 
QUAL < 30.0, DP < 4.0. Finally, SNP and InDel data sets of 
high reliability were obtained. All potential chromosome 
SVs were detected by chromosomal structural variation 
analysis using the DELLY software (Rausch et al. 2012).

Statistical analyses
Student’s t-test (implemented in the DPS (Data Proces-
sion System) version 12.01 software (Zhejiang University, 
Hangzhou, China) was used to examine the significance 
of differences among average values of isolates grown 
rate on PDA plates, percent of infected spikelets and 
the relative expression levels of CYP51-A and CYP51-
B genes. Statistical differences were analyzed using the 
Least Significant Difference test at P ≤ 0.05. In order to 
minimize errors, two independent tests were performed, 
and the average value of the two tests was taken as the 
final result.
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