
Sun et al. Phytopathology Research            (2023) 5:61  
https://doi.org/10.1186/s42483-023-00215-8

REVIEW

The tug‑of‑war on iron between plant 
and pathogen
Jiaying Sun1, Shuqin Xiao1* and Chunsheng Xue1*    

Abstract 

Iron participates in various crucial metabolic processes as an essential cofactor of many enzymes, which are vital 
to the survival of plants and their pathogens. However, excessive iron is toxic to the cells of plants and pathogens. Iron 
plays a complex role in the interactions between plants and pathogens. Plants and pathogens have evolved sophis-
ticated mechanisms to modulate iron status at a moderate level for maintaining fitness. Iron competition extensively 
exists on both sides of plants and pathogens during infection. Plants employ iron withholding, local iron accumula-
tion, or iron deficiency to trigger resistance against pathogens. Pathogens counteract host-derived iron stress or inter-
fere with plant iron homeostasis to ensure virulence during infection. This review focuses on the recent progress 
in understanding the roles of iron in plant-pathogen interactions and proposes prospects for future studies.
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Background
Iron (Fe) is essential for most living organisms, includ-
ing plants and pathogens (Philpott 2006). Iron exists as 
reduced, ferrous Fe2+ and oxidized, ferric Fe3+, making 
them essential cofactors of enzymes that mediate redox 
reactions in a variety of key cellular metabolic processes 
such as respiration, tricarboxylic acid cycle, DNA and 
lipid synthesis, electron transfer, and cell proliferation 
(Aznar et  al. 2015; Camprubi et  al. 2017; Verbon et  al. 
2017).

Iron is mainly present in the Earth’s crust as ferric 
hydroxides, which has extremely limited bioavailability 
due to its poor solubility under neutral aerobic condi-
tions (Mori 1999). The growth and virulence of pathogens 
are defective under iron-deficiency conditions (Johnson 

2008; Braun and Hantke 2011), as are chlorophyll syn-
thesis and photosynthesis of plants, resulting in chloro-
sis and severe growth defects (Hänsch and Mendel 2009; 
Ravet et  al. 2009). However, excess ferrous Fe2+ inside 
cells easily combines with oxides or peroxides to form 
toxic hydroxyl radicals via the Fenton reaction, causing 
damage to proteins, DNA, and lipids (Pierre and Fonte-
cave 1999; Papanikolaou and Pantopoulos 2005; Dixon 
and Stockwell 2014). As a result, plants and pathogens 
have evolved various mechanisms for tightly regulating 
iron uptake, transport, and storage.

Competition for iron is a pivotal issue of plant-path-
ogen interactions (Verbon et  al. 2017; Liu et  al. 2021; 
Herlihy et  al. 2020). For one thing, host plants redis-
tribute iron at the cellular level during pathogen infec-
tion to initiate iron immunity, modulate reactive oxygen 
species (ROS) bursts, or directly activate the immune 
system (Weinberg et  al. 2008; Kehl-Fie and Skaar 2010; 
Ganz and Nemeth 2015; Soares and Weiss 2015; Xing 
et  al. 2021). For another, some pathogens counteract 
plant immunity by extracting iron from host iron storage 
proteins, switching iron uptake strategies to overcome 
host-derived iron stress, or secreting effectors to interfere 
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with plant iron homeostasis during infection (Singh et al. 
2016; Xing et al. 2021; Wang et al. 2022). These manipu-
lations are primary participants in the iron tug-of-war 
between plants and pathogens. In this review, we focus 
on recent progress in the regulatory mechanism of iron 
homeostasis in plants and pathogens, as well as the fun-
damental role of iron on plant immunity and pathogen 
virulence, emphasizing the unique role of iron in plant-
pathogen interactions.

Iron homeostasis in plants
Plants have developed sophisticated mechanisms to 
ensure an adequate supply of iron in a fluctuating envi-
ronment. Plants sense iron status and modulate the tran-
scription of iron uptake-associated genes to regulate iron 
uptake from soil to root.

Iron acquisition strategies in plants
To adapt to Fe-deficient environments, plants evolved 
two different iron uptake mechanisms, known as reduc-
ing (Strategy I) and chelating strategies (Strategy II) 
(Römheld and Marschner 1986). Non-grass plants 
employ Strategy I to mobilize and acquire iron,  which 
includes acidification of the rhizosphere by root-
released H+ involving H+-ATPase, such as AHA2 (Santi 
and Schmidt 2009). Fe3+ is reduced to Fe2+ by plasma 
membrane protein Ferric Reduction Oxidase 2 (FRO2) 
before being transported to the root epidermis by high-
affinity iron transporter Iron-Regulated Transporter 1 
(IRT1) (Eide et  al. 1996; Robinson et  al. 1999; Brum-
barova et al. 2015). The grass family represents Strategy 
II plants, which release phytosiderophores (PS) from 
roots to solubilize and chelate Fe3+ in soil by Trans-
porter of Mgineic Aid1 (TOM1) (Nozoye et  al. 2011). 
Fe3+-phytosiderophores chelates are then taken up by 
specific transporters, such as Yellow Sytripe1 transporter 
(YS1) or YS1-like (YSL) in plants (Curie et al. 2001; Kob-
ayashi and Nishizawa 2012).

Regulation of iron homeostasis in plants
Iron uptake from the soil is essential for maintaining 
plant iron homeostasis, but it is not the sole mechanism 
involved in the above process. Plants have developed 
mechanisms for regulating gene expression in response 
to iron availability to maintain iron homeostasis. Multi-
ple basic helix-loop-helix (bHLH) transcription factors 
are involved in regulating plant iron homeostasis. The 
FER-like Iron deficiency-induced Transcription factor 
(FIT) and POPEYE (PYE) modules are the two critical 
regulatory networks of iron homeostasis in the Strategy 
I plant (Long et al. 2010; Ivanov et al. 2012). Upon iron 
deprivation, the FIT (bHLH29) is activated at the tran-
scriptional and post-translational levels after it interacts 

with the Ib subgroup of bHLH transcription factors 
(bHLH38/39/100/101) (Yuan et  al. 2008; Sivitz et  al. 
2012; Wang et  al. 2013) to activate downstream iron-
uptake genes, such as AHA2, FRO2, and IRT1 (Colangelo 
and Guerinot 2004; Santi and Schmidt 2009). Independ-
ent of FIT, the expression of the IVb subgroup of bHLH 
transcription factor PYE/bHLH47 is also upregulated 
upon iron deficiency. Like FIT, PYE interacts with IVc 
bHLH transcription factor ILR3/bHLH115, activating 
FRO2/IRT1 or ferritins FER/nicotianamine synthase 
4 (NAS4) to facilitate iron transportation (Long et  al. 
2010). E3 ubiquitin-protein ligase BRUTUS (BTS) inter-
acts with ILR3/bHLH105 and bHLH115 to facilitate their 
degradation via the 26S proteasome pathway, negatively 
regulating the expression of FIT and PYE to prevent 
iron overload in Fe-sufficient environments (Long et  al. 
2010; Selote et  al. 2015; Rodrı´guez-Celma et  al. 2019). 
In addition, UPSTREAM REGULATOR OF IRT1 (URI/
bHLH121) has been recently identified and character-
ized as a positive regulator of plant iron homeostasis that 
directly or indirectly regulates the expression of most of 
the known genes participating in FIT and PYE regula-
tory networks (Kim et al. 2019; Gao et al. 2020; Lei et al. 
2020).

Iron homeostasis in rice, a model plant for studying 
the strategy II mechanism, is also regulated by the bHLH 
transcription factors. The rice OsbHLH156/Oryza sativa 
FER-Like Fe Deficiency Induced Transcription Factor 
(OsFIT), OsbHLH56/Iron Related Transcription Fac-
tor 2 (OsIRO2), and OsbHLH63/OsIRO3 directly regu-
late genes involved in the iron uptake of Strategy II plant 
(Ogo et al. 2007; Liang et al. 2020; Wang et al. 2020). Osb-
HLH56/OsIRO2 positively regulates phytosiderophore 
biosynthesis and the expression of  iron (III)-Deoxymug-
ineic acid transporter YSL15 (Ogo et  al. 2006); OsFIT/
OsbHLH156 interacts with OsIRO2/OsbHLH56 and pro-
motes its accumulation in the nuclear (Liang et al. 2020; 
Wang et al. 2020). In contrast, OsIRO3 negatively regu-
lates iron deficiency responses (Zheng et  al. 2010). Iron 
deficiency induces an increase in transcript abundance 
of OsIRO2 and OsIRO3, which is mediated by Positive 
Regulator of Iron Homeostasis OsPRI1/OsbHLH060, 
OsPRI2/OsbHLH058, and OsPRI3/OsbHLH059 (Zhang 
et al. 2017, 2020; Kobayashi et al. 2019). Two more tran-
scription factors, the Iron Deficiency-Responsive Ele-
ment-binding Factor 1 and 2 (IDEF1 and IDEF2) from the 
ABI3/VP1 and NAC families, are also vital in regulating 
iron homeostasis (Kobayashi et al. 2007, 2009). OsIDEF1 
functions upstream of OsIRO2, forming a transcriptional 
cascade that enhances the expression of genes involved in 
Fe(III)-DMA uptake and translocation, whereas OsIDEF2 
regulates iron transport by binding to the promoters of 
several genes involved in iron homeostasis (Kobayashi 
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et al. 2007, 2009). Haemerythrin Motif-containing Really 
Interesting New Gene (Ring) and Zinc-Finger Protein 
1 and 2 (OsHRZ1 and OsHRZ2), two rice ubiquitin E3 
ligases displaying high homology with BTS, have been 
reported as potential iron sensors that play a negative 
role in iron acquisition under iron-sufficient conditions 
(Kobayashi et  al. 2013). The in-depth study of the tran-
scriptional regulation of iron homeostasis in strategy II 
plants is mainly focused on rice, which remains to be fur-
ther explored.

Plant signals and hormones are also involved in the 
regulation of iron homeostasis. Salicylic acid (SA), gib-
berellin (GA), nitric oxide (NO), and ethylene (ET) play 
key roles in the Fe-response signaling pathway (Graziano 
et  al. 2002; Lingam et al. 2011; Meiser et  al. 2011; Wild 
et al. 2016). SA has been found to upregulate the expres-
sion of Fe-responsive transcription factor genes bHLH38, 
bHLH39, and the Fe transport gene YSL3 (Kang et  al. 
2003). The SA levels increase, and the expression of SA-
responsive genes is upregulated in Arabidopsis under 
iron deficiency conditions (Chen et  al. 2014; Shen et  al. 
2016). DELLAs, the repressors of the GA signal path-
way, directly bind to FIT, thereby inhibiting the expres-
sion of the downstream IRT1 gene under Fe-abundant 
conditions (Wild et  al. 2016). Iron deficiency stimu-
lates NO accumulation in plant roots, which upregu-
lates iron uptake genes (Graziano et al. 2007). In tomato 
plants, treatment with an NO donor to Fe-deficient roots 
induces the upregulation of FRO1, IRT1, and FER (Grazi-
ano et al. 2007). Applying NO to maize mutants defective 
in Fe uptake can revert the chlorosis phenotype (Grazi-
ano et al. 2005). Furthermore, NO has also been identi-
fied as a stabilizing stimulus of FIT protein abundance 
implicated in post-translational regulation of FIT (Meiser 
et al. 2011). In Arabidopsis, tomato, and cucumber, sup-
plementary ethylene induces the Fe deficiency response 
(Romera and Alcantara 1994; Lucena et  al. 2006, 2015; 
Waters et al. 2007; Garcia et al. 2010). Ethylene induces 
physiological and morphological responses in plant roots 
under Fe-deficient conditions (Lucena et  al. 2015). The 
addition of ethylene, ACC, or ethephon, plants show 
physiological changes, such as enhanced ferric reduc-
tase activity, Fe2+ uptake capacity, rhizosphere acidifica-
tion, and flavin excretion (Romera and Alcántara 2004; 
Lucena et al. 2006; Waters et al. 2007; García et al. 2010). 
In addition to physiological responses, ethylene also reg-
ulates morphological responses to Fe deficiency, such as 
enhanced root hairs, surface area of root epidermal trans-
fer cells, and cluster roots (Schmidt and Schikora 2001; 
Schikora and Schmidt 2002; Zaid et al. 2003; Romera and 
Alcántara 2004). Reciprocally, Fe deficiency influences 
ethylene biosynthesis and signaling pathways (Wu et  al. 
2011; Lucena et  al. 2015; Ye et  al. 2015). FIT promotes 

stability and assists iron acquisition by interacting with 
transcription factors EIN3 and EIL1 in the ET signal-
ing pathway (Lingam et al. 2011). Thus, there is positive 
feedback between Fe deficiency responses and ethylene 
biosynthesis. Recently, it has been reported that Fe defi-
ciency induces the high expression of SAM1 and SAM2 
in a FIT-bHLH Ib module-dependent manner in plant 
roots (Lu and Liang 2023). These findings reveal that 
SA, NO, and ET are positive regulators of the Fe uptake, 
whereas GA is a negative regulator. The fact that hor-
mones and signals contribute to iron homeostasis indi-
cates that fine-tuning Fe transport, storage, and uptake 
is crucial for immunity. ROS and Ca2+ signals also play 
a vital role in the regulation of plant development and 
stress response (Castro et al. 2021; Dong et al. 2021; Luan 
and Wang 2021). ROS-inducible transcriptional regula-
tor ZAT12 interacts with FIT to prevent FIT degradation 
(Brumbarova et  al. 2015). Calcium-dependent protein 
kinase CIPK11 interacts with FIT and activates FIT via 
phosphorylation at Ser272, allowing for FIT-dependent 
Fe deficiency responses (Gratz et  al. 2019). Under iron-
deficient conditions, calcium-dependent protein kinases 
CPK21 and CPK23 interact with and phosphorylate 
IRT1, promoting the transport of Fe from the extracel-
lular space to the intracellular space (Wang et al. 2023). 
These findings indicate that plants fine-tune iron homeo-
stasis at transcriptional and post-transcriptional levels.

Iron homeostasis in plant pathogens
During pathogen infections, iron is closely combined 
with plant ferritin, which makes it extremely low and 
unable to be absorbed and utilized by pathogens. Path-
ogens have developed various iron uptake strategies to 
successfully uptake iron from host plants for infection. In 
addition, pathogens have evolved precise iron-responsive 
regulatory systems to maintain iron homeostasis to adapt 
to iron-scarce or abundant host environments.

Iron acquisition of plant pathogens
The iron uptake strategies of plant pathogens have clas-
sically been divided into low-affinity and high-affinity 
uptake pathways (Haas 2014). Low-affinity uptake path-
ways encompass iron-containing protein uptake path-
ways and ferrous iron absorption pathways, mainly 
employed when iron is sufficient. The high-affinity uptake 
pathways play essential roles in acquiring iron under iron 
deficiency conditions, among which the siderophore-
mediated iron uptake pathway is the most well-studied 
(Haas et al. 2008).

The high-affinity uptake pathways play substantial roles 
in the iron acquisition of phytopathogenic fungi during 
infection, including the reductive iron assimilation (RIA) 
pathway and the siderophore-mediated iron assimilation 
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(SIA) pathway (Haas et  al. 2008; Albarouki and Deising 
2013). The RIA pathway is characterized by two redox 
steps at the plasma membrane. Iron reductases reduce 
the extracellular insoluble or chelator-complexed ferric 
Fe3+ to soluble ferrous Fe2+ (Dancis et  al. 1992). Subse-
quently, Fe2+ is oxidized to Fe3+ and translocated into the 
cytoplasm by the synergistic complex multicopper fer-
roxidase (Fet3) and iron permease (Ftr1) (Marvin 2004; 
Albarouki and Deising 2013). Extracellular siderophores 
are a group of low molecular weight (ranging from 500 
to 1500  Da) ferric-iron-specific chelators that positively 
influence the iron uptake of pathogens (Chu et al. 2010). 
Ornithine is catalyzed by the L-ornithine-N5-monoox-
ygenase SidA and the non-ribosomal peptide synthase 
NPS to synthesize siderophores (Philpott 2006; Haas 
et  al. 2008; Johnson 2008). The Fe3+-siderophore com-
plexes are transported into the cell by the siderophore 
iron transporter (ARN/SIT) subfamily (Haas 2014).

Various extracellular siderophores are widespread in 
most phytopathogenic bacteria (Chu et  al. 2010; Hider 
and Kong 2010). For Gram-negative bacteria, sidero-
phores are secreted into the extracellular space and 
specifically bind to Fe3+ to form Fe3+-siderophore com-
plexes, delivered into the periplasm by TonB-dependent 
transporters (TBDTs) located in the outer membrane. 
Then, the Fe3+-siderophore complex is transported into 
the cytoplasm via an ABC transporter in the inner mem-
brane. For Gram-positive bacteria, due to the absence 
of the outer membrane system of the bacteria, the 
Fe3+-siderophore complex uptake is implemented in one 
step, which is performed through an ABC-like transport 
system (Andrews et  al. 2003; Pandey et  al. 2023). For 
some Gram-negative bacteria, the ferrous iron uptake 
system is vital for iron acquisition in some anaerobic-
microaerophilic environments. The ferrous iron is trans-
ported to the periplasm by Fe2+-specific porins. Then, 
the FeoB complex (FeoABC) transporter transports the 
ferrous iron to the cytoplasm (Janakiraman and Slauch 
2000; Marlovits et al. 2002; Hantke 2003).

Transcriptional regulation of iron homeostasis in plant 
pathogens
Regulation of iron homeostasis is indispensable to ensure 
optimal cellular metabolism and avoid iron toxicity in 
phytopathogenic fungi. A negative feedback loop con-
sisting of transcription factors Sre and HapX tightly 
regulates iron homeostasis in plant fungal pathogens 
(Canessa and Larrondo 2013; John et  al. 2021). GATA-
type transcription factor Sre (Siderophore biosynthe-
sis repressor) is a core transcriptional regulator of iron 
homeostasis in phytopathogenic fungi (Voisard et  al. 
1993; Chao et  al. 2008). Under iron sufficiency condi-
tions, Sre binds to the consensus sequence ATC​WGA​

TAA and represses RIA and SIA pathways to avoid iron 
toxicity (An et  al. 1997a, b; Chung et  al. 2020). Under 
iron starvation conditions, the transcriptional repression 
by Sre is disinhibited in the pathogen, thereby initiating 
the iron uptake pathway to rapidly acquire iron from the 
host plant (Schrettl et al. 2010). The bZIP-type transcrip-
tion factor HapX is highly conserved among phytopath-
ogenic fungi and has a basic leucine zipper domain that 
specifically binds to the 5′-CCAAT-3′ motif (Schrettl 
et al. 2010; Wang et al. 2019). Under iron starvation con-
ditions, HapX spares iron by repressing iron-consuming 
pathways involved in processes of respiration, amino 
acid metabolism, citric acid cycle, DNA replication, and 
DNA repair (Jung et al. 2010; Schrettl et al. 2010; Chen 
et al. 2011; Hsu et al. 2011; López-Berges et al. 2012). Sre 
represses the expression of hapX under iron sufficiency 
conditions, while HapX represses Sre under iron starva-
tion conditions (Mercier et al. 2006, 2008; Jbel et al. 2009; 
Jung et  al. 2010). Additionally, both Sre and HapX are 
regulated post-translationally with iron to inhibit HapX 
and activate Sre (Haas 2012). Recently, histone H2B deu-
biquitination (H2B deub1) and the deposition of histone 
variant H2A.Z and histone 3 lysine 27 trimethylation 
(H3K27 me3) have been found to be involved in the 
networks of HapX- and Sre-mediated iron homeostasis 
regulation. Under iron excess conditions, HapX activates 
iron storage by promoting H2B deub1 at the promoter 
of the responsible genes. Meanwhile, Sre inhibits iron 
acquisition by facilitating the deposition of H2A.Z and 
H3K27 me3 at the first nucleosome after the transcrip-
tion start site (Sun et al. 2023).

Although Sre and HapX have been identified to be 
involved mainly in iron homeostasis regulation, they 
are also members of a larger transcriptional network in 
which other transcription factors modulate their expres-
sions, and several of their targets are also subject to 
additional transcriptional regulation. Recent findings 
show that pH-responsive transcription factor PacC and 
nitrogen metabolism regulator AreA are involved in the 
regulation of iron homeostasis in phytopathogenic fungi 
(Gu et al. 2022; Wang et al. 2019). This finding indicates 
the potential existence of a regulatory network tandem 
between iron homeostasis, nitrogen metabolism, and pH 
response pathways in phytopathogenic fungi.

Fur (Ferric uptake regulator) is a global regulatory tran-
scription factor that plays a core role in maintaining bac-
terial iron homeostasis, and its function depends on the 
availability of Fe2+ (Baichoo et al. 2002; Fuangthong and 
Helmann 2003). Under iron excess conditions, Fur dimer 
and its corepressor Fe2+ form a complex that binds to the 
conserved fur-box located in the promoter of many iron-
uptake-related genes, including the biosynthetic genes of 
siderophores, to suppress their expression (Jittawuttipoka 
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et al. 2010; Troxell and Hassan 2013). In contrast, under 
iron deficiency conditions, Fur dissociates with Fe2+, dis-
engages from the promoter regions of target genes, and 
initiates iron uptake (Pandey 2023). XibR (Xanthomonas 
iron-binding regulator) is another novel iron-binding 
transcriptional repressor of siderophore-biosynthetic 
genes (Pandey and Chatterjee 2022). Under iron-replete 
conditions, the Fe3+-XibR complex directly binds to the 
promoter region of genes involved in siderophore syn-
thesis, thereby repressing gene expression. Meanwhile, 
under iron-deplete conditions, XibR transcriptionally 
activates the expression of genes related to iron storage 
and outer membrane receptors for enhancing iron uptake 
(Pandey et al. 2016). These findings indicate that the reg-
ulation of iron homeostasis in phytopathogenic bacteria 
is a complex system.

The role of iron in the interactions between plants 
and pathogens
Iron is a key microelement with multiple roles through-
out plant-pathogen interactions. Both sides of the inter-
action have evolved a variety of strategies to limit the 
rival’s iron availability or disrupt iron homeostasis.

Iron and plant immunity
A defense strategy in vertebrates is withholding Fe by fer-
ritin to limit iron availability for pathogen proliferation 
(Soares and Weiss 2015). The growth and developmental 
restriction of pathogens conferred by plant iron avail-
ability is called “iron immunity” (Xing et al. 2021). Host 
plants hide iron with iron storage proteins and defensin 
to create a locally extremely deficient iron host environ-
ment, inhibiting pathogen growth, development, and 
virulence (Kieu et al. 2012; Hsiao et al. 2017). The iron-
binding ferritin gene (FER) expression is upregulated 
in plants after pathogen infection (Dellagi et  al. 2005). 
During the interaction between Arabidopsis thaliana 
and Dickeya dadantii, the iron content of infected sites 
is significantly lower than that of non-infected sites. The 
expression of the iron storage gene FERRITIN1 (AtFER1) 
is upregulated to initiate iron immunity that sequesters 
free Fe3+ in the cytoplasm and prevents Fe3+ entering 
apoplasts against pathogen invasion (Kieu et  al. 2012; 
Aznar et  al. 2015). Arabidopsis plants deficient in FER 
expression are more susceptible to D. dadantii (Dellagi 
et al. 2005). The role of plant defensins (PDF1.1, 1.2, and 
1.3) is consistent with FER in iron immunity (Thomma 
et  al. 2002; Sels et  al. 2007). The AtPDF1.1 is secreted 
into the apoplast to chelate Fe3+, limiting the iron sup-
ply and reducing pathogen virulence (Hsiao et al. 2017). 
Moreover, multiple plant immune-signaling pathways 
commonly suppress the pathogenic bacterial iron acqui-
sition pathway (Nobori et al. 2018). The above examples 

suggest that iron immunity is one of the essential defense 
responses in plant-pathogen interactions.

Local iron accumulation is also an iron-immune strat-
egy in plants. Recruitment of iron in infection sites 
induces ROS bursts through the Fenton reaction, which 
is a critical immune response for plants, particularly 
poaceae. In wheat-Blumeria graminis pathosystems, 
Fe3+ accumulates and ROS bursts at cell wall apposi-
tions (CWAs) (Greenshields et al. 2007; Liu et al. 2007). 
In rice-Magnaporthe oryzae pathosystems, Fe3+ is over-
accumulated at infectious sites, dramatically suppress-
ing the pathogen’s growth by host ROS bursts. Fe3+ and 
ROS bursts at infected sites and phytochemical accu-
mulation significantly enhance host resistance with high 
iron treatment. In agreement with these findings, in the 
pathosystems of maize and Colletotrichum gramini-
cola, sufficient iron induces ROS accumulation and 
enhances host resistance (Ye et al. 2014). In addition, in 
the incompatible rice-M. oryzae interaction, iron redis-
tribution and ROS accumulation lead to iron- and ROS-
dependent ferroptotic cell death, which is an important 
plant immune response (Dangol et  al. 2019; Liang et  al. 
2021). These data indicate that the mechanistic connec-
tion between the recruitment of iron and a successful 
immune response is explained, at least in part, by ROS 
bursts dependent on iron.

Iron deficiency confers plant resistance as an impor-
tant immune response. Under iron deficiency conditions, 
A. thaliana confers resistance to the bacterial patho-
gen D. dadantii and the necrotrophic fungus Botrytis 
cinerea (Kieu et  al. 2012). The inoculation of B. cinerea 
activates the Fe deficiency response of plants, which 
further induces ethylene synthesis and then resistance 
to B. cinerea (Lu and Liang 2023). In addition, iron defi-
ciency induces the production of secondary metabolites 
involved in plant immunity. Under iron-deficient condi-
tions, Arabidopsis roots secrete coumarin with antimi-
crobial ability and function as defense compounds in host 
plants against pathogen infection (Verbon et  al. 2017; 
Beyer et  al. 2019). In rice, iron deficiency triggers the 
secretion of protocatechuic acid, which has antimicrobial 
activity and confers resistance to the fungal pathogen C. 
circinans in onions (Tzin and Galili 2010; Ishimaru et al. 
2011). These data show that iron deficiency can trigger 
the plant immune system (Fig. 1).

In addition, plant iron homeostasis is inextricably 
linked to plant immunity. Pathogen infections signifi-
cantly modulate the high expression of iron homeostasis 
genes in host plants. Meanwhile, the expression of IRT1, 
FRO2, and AtNRAMP3 (an iron transporter located in 
vacuole membrane) is upregulated in roots by D. dadan-
tii inoculation in Arabidopsis leaves (Dellagi et al. 2005; 
Segond et  al. 2009; Aznar et  al. 2014). In rice, miR7695 
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expression is regulated by M. oryzae infection, with 
subsequent downregulation of an alternatively spliced 
transcript of iron transporter OsNramp6 (natural resist-
ance-associated macrophage protein 6) (Li et  al. 2019; 
Sánchez-Sanuy et  al. 2019). These results suggest that 
IRT1, FRO2, and NRAMP are involved in plant immunity 
as positive regulators. PYE/ILR3 plays a key role in ROS 
accumulation by facilitating cluster shuttling between 
proteins in intracellular organelles and the cytosol via a 
conserved 2Fe-2S protein NEET (Nechushtai et al. 2012; 
Zandalinas et  al. 2020). In addition, ILR3 also interacts 
with the Alfalfa mosaic virus coat protein and positively 
regulates accumulations of ROS, pathogenesis-related 
protein 1 (PR1), SA, and JA (Aparicio and Pallás 2017). 
BTS, an iron-binding E3 ligase, interacts with AtVOZ1 
and AtVOZ2, which are NAC transcriptional regula-
tors that activate the defense responses against fungal 
and bacterial infection in A. thaliana (Nakai et al. 2013; 
Selote et al. 2018). Thus, iron homeostasis has an intrin-
sic role in coordinating plant growth, development, and 
disease resistance.

Iron and virulence of plant pathogens
Siderophore-mediated iron uptake pathway is essential 
for the full virulence of many phytopathogenic bacteria, 
such as D. dadantii, Erwinia amylovora, E. carotovora, 
Pseudomonas syringae pv. tabaci, and Xanthomonas 

oryzae pv. oryzicola (Barnes and Ishimaru 1999; Franza 
et al. 2005; Taguchi et al. 2010; Rai et al. 2015; Müller 
et al. 2022). However, siderophores exhibit no obvious 
impact on virulence in some phytopathogenic bacte-
ria, such as P. syringae pv. tomato DC3000, and Ralsto-
nia solanacearum AW1 (Bhatt and Denny 2004; Jones 
and Wildermuth 2011). The ferrous iron uptake path-
way also plays an important role in the virulence of 
some phytopathogenic bacteria. For example, the full 
virulence of X. oryzae pv. oryzae is dependent on the 
ferrous iron uptake pathway rather than on the sidero-
phore-mediated iron uptake pathway (Pandey and 
Sonti 2010).

The ability to uptake iron from the host is indispensa-
ble to the virulence of phytopathogenic fungi. High-affin-
ity iron assimilation pathways RIA and SIA are essential 
for full virulence. The RIA pathway is necessary for U. 
maydis and Microbotryum violaceum to ensure their full 
virulence (Birch and Ruddat 2005; Eichhorn et al. 2006). 
SIA pathway is essential for the full virulence of C. miya-
beanus, A. brasicicola, A. alternata, F. graminearum, M. 
grisea, C. graminearum, and Aspergillus fumigatus (Oide 
et al. 2006; Greenshields et al. 2007; Hof et al. 2007, 2009; 
Chen et al. 2013; Haas 2014; Lu et al. 2021). In addition, 
the low-affinity iron assimilation pathway also plays a 
role in virulence (Grinter et  al. 2018; Zheng et  al. 2017; 
Yu et al. 2023).

Fig. 1  Iron-mediated plant immunity. A strategy is to withhold Fe by chelating to limit iron availability necessary for pathogen proliferation (upper 
left). The second strategy is to suppress pathogens at infection sites by local iron accumulation, which induces ROS bursts (lower left). The third 
strategy is to induce the production of defense compounds or ethylene synthesis via iron deficiency to activate the expression of defense genes 
(right)
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A unique correspondence between the high-affinity 
uptake pathways and lifestyles exists in maize pathogenic 
fungi, and biotrophic and necrotrophic fungi have been 
found to rely on RIA and SIA pathways, respectively, for 
iron acquisition during pathogenesis (Mei et  al. 1993; 
Eichhorn et al. 2006; Oide et al. 2006; Condon et al. 2014). 
Interestingly, the maize hemibiotrophic fungi utilize RIA 
and SIA pathways at biotrophic and necrotrophic stages, 
respectively (Albarouki et al. 2014). In typical maize bio-
trophic fungus U. maydis, the deletion of SIA pathway 
gene Sid1 has no impact on virulence, while inactivation 
of the multicopper oxidase gene Fer1 and the iron per-
mease gene Fer2 in the RIA pathway results in virulence 
reduction (Mei et al. 1993; Eichhorn et al. 2006). In maize 
necrotrophic fungus C. heterostrophus, the siderophore 
biosynthesis gene ChNPS6 is required for full virulence, 
while the iron permease gene FTR1 is dispensable for 
virulence (Oide et  al. 2006; Condon et  al. 2014). Mean-
while, the two life stages of maize hemibiotrophic fungus 
C. graminicola coincide with the two distinct iron uptake 
pathways. Inactivation of the RIA pathway gene fet1-3 in 
C. graminicola impairs the infection structure differen-
tiation and the appressorial penetration in the biotrophic 
phase, while the deletion of SIA pathway genes sid1 and 
nps6, results in necrotrophic hyphae expansion and viru-
lence reduction (Albarouki and Deising 2013; Albarouki 
et al. 2014). These findings suggest a correlation between 
the iron assimilation pathways switch and the trophic 
style transition in hemibiotrophic fungi in maize.

Extracellular siderophores trigger plant immunity
In addition to contributing to pathogen virulence, extra-
cellular siderophores are able to trigger plant immunity. 
Fungal extracellular siderophores initiate plant immunity 
in two different ways. Extracellular siderophores activate 
the salicylic acid pathway in A. thaliana by scavenging Fe, 
whereas siderophore-Fe complexes are ineffective (Dell-
agi et al. 2009). Similarly, treatments of barley leaves with 
deferrioxamine (DFO) upregulate the expression of PR 
and Fe homeostasis genes (Liu et al. 2007). These results 
indicate that iron scavenging is precisely a mechanism of 
immunity. Fungal extracellular siderophores also directly 
activate plant immune responses. Pretreatment with the 
coprogen primes maize defenses against the hemibio-
troph pathogenic fungus C. graminicola (Albarouki et al. 
2014). Pre-treated maize leaves enhance PR gene induc-
tion and ROS accumulation upon subsequent attack by 
pathogens. Similar results are obtained upon treatments 
with apo-coprogen or Fe-coprogen, indicating that prim-
ing, in this case, is independent of Fe scavenging. As 
the priming effect of coprogen on immune responses 
in maize does not rely on Fe scavenging, coprogen may 
be recognized by a receptor to activate downstream 

responses, as in the case of MAMPs that are recognized 
by pattern recognition receptors. In addition, extracel-
lular siderophores modify Fe distribution at the cellular 
level in plants. Siderophores induce ROS production and 
activate immunity by directly transferring iron from apo-
plast to cell wall accumulation (Aznar et al. 2015).

Plant pathogens overcome “iron‑related immunity” using 
diverse strategies
Well-adapted pathogens have evolved mechanisms 
for extracting iron from host iron storage proteins 
(Fig.  2a).  Verticillium dahliae chelates iron from host 
plants through Asp-type CFEM family members in 
iron-deficiency xylem and Asn-type CFEM members 
to suppress immunity, for successful colonization and 
propagation in host plants (Wang et al. 2022). The xfeA 
(iron receptor gene) in X. oryzae pv. oryzicola senses 
extra-cytoplasmic iron by adenosine-to-inosine (A-to-
I) RNA editing, suggesting that bacteria may use A-to-I 
editing as an alternative strategy to promote the uptake 
of metabolic iron and improve their competitiveness (Nie 
et al. 2021). This observation has revealed a new mecha-
nism by which bacteria use A-to-I RNA editing to adjust 
iron concentrations. The hemibiotrophic pathogens shift 
lifestyle from biotrophs during the early stage of infec-
tion to the necrotrophic phase at the late stage. The life-
style transition in their infectious cycle suggests that the 
hemibiotrophic fungi switch their iron uptake strate-
gies to counteract host iron immunity during infection. 
C. graminicola utilizes the RIA pathway to efficiently 
acquire iron in the biotrophic stage and overcome host 
low iron stress for pathogens invasion and development 
(Albarouki and Deising 2013). Subsequently, pathogens 
secrete extracellular siderophores to chelate Fe3+. Fur-
thermore, extracellular siderophores plunder iron from 
host ferritin to limit oxidative stress caused by iron accu-
mulation in plants (Albarouki et  al. 2014). Biosynthetic 
genes of extracellular siderophores are specifically down-
regulated during the biotrophic phase, possibly regulat-
ing the production of siderophores at the early stages of 
infection to circumvent the elicitation of host immune 
responses.

Interfering with plant iron homeostasis is another 
mechanism by which pathogens counteract iron-regu-
lated immunity (Fig.  2b). AvrRps4, an effector protein 
delivered by P. syringae, interacts with and targets the 
plant iron sensor protein BTS to facilitate iron uptake and 
pathogen proliferation in A. thaliana. AvrRps4 resulted 
in iron accumulation, especially in the plant apoplast 
(Xing et al. 2021). M. oryzae suppresses ROS accumula-
tion by secreting effector AVR-Pii and interferes with fer-
roptosis to overcome host immunity (Singh et al. 2016). 
These findings suggest that secreting effector proteins is 
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Fig. 2  Pathogens employ multiple mechanisms to overcome plant iron-regulated immunity. a One strategy is to extract iron from host iron 
storage proteins. For example, under plant iron-depleted conditions, V. dahliae employs the Asp-type CFEM-containing VdSCPs (VdSCP33, VdSCP41, 
VdSCP43, VdSCP72, VdSCP99, VdSCP116, and VdSCP120) to sequester iron to counteract host resistance; under iron-depleted conditions or in planta, 
xfeA in Xanthomonas oryzae pv. oryzicola senses extra-cytoplasmic iron and changes the hydrogen bonding network of ligand channel domains 
by adenosine-to-inosine (A-to-I) RNA editing; C. graminicola utilizes the RIA pathway to efficiently acquire iron in the biotrophic stage, overcomes 
host low iron stress. b Pathogens secrete extracellular siderophores to chelate Fe3+ to limit host oxidative stress. Another strategy is to interfere 
with plant iron homeostasis. For example, effectors delivered by pathogens interact with and target the plant iron homeostasis protein to facilitate 
iron uptake or inhibit ROS production
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an important strategy by which pathogens interfere with 
plant iron homeostasis.

Conclusion and Perspectives
Iron should be considered as a crucial microelement with 
complex roles in plant-pathogen interactions. Many top-
ics remain to be addressed about the role of iron in the 
interaction between plants and pathogens, which will 
influence future research directions.

Iron is a conserved factor as a microelement and sig-
nal that potentially modulates defense response against 
invaders in animal and plant kingdoms during evolu-
tion. Plant iron status is a key indicator of plant-pathogen 
interactions and particular defense responses. Fe supply 
modulation leads to different outcomes depending on the 
strategy of pathogen infection. In some cases, Fe directly 
contributes to the amplification of plant ROS production. 
Moreover, Fe supply indirectly affects plant metabolic 
activity, thereby allowing the production of antimicrobial 
compounds or other defenses that require Fe-dependent 
enzymes. However, Fe deficiency also causes the accu-
mulation of antimicrobial compounds. These lines of 
evidence suggest that iron status has multiple effects on 
plant immunity depending on specific plant-pathogen 
interactions. However, studying how the host plants 
determine to defend the pathogens by withholding iron 
or over-accumulating iron is still needed.

Microbial extracellular siderophores initially secreted 
by pathogens to acquire Fe from their environment have 
been shown to trigger defense responses. Depending on 
the host, defense responses by extracellular siderophores 
are involved in either their Fe scavenging property or as 
MAMPs (microbe-associated molecular patterns). In 
the soil environment, plants are exposed to a variety of 
beneficial or pathogenic microorganisms, all of which 
are likely to produce extracellular siderophores. A better 
understanding of how extracellular siderophores affect 
plant immunity holds promise for designing new crop 
protection strategies.

Hemibiotrophic pathogens switch their iron uptake 
strategies to adapt to host iron status. For example, 
maize plants recruit free iron to the infection site, 
which induces ROS accumulation during C. gramini-
cola infection (Ye et  al. 2014). The iron assimilation 
pathway of C. graminicola switches from RIA to SIA 
in response to host iron status changes (Albarouki and 
Deising 2013; Albarouki et  al. 2014). This evidence 
shows that the iron status of host plants substantially 
determines iron assimilation pathways utilized by fun-
gal pathogens. A comprehensive study of biotrophic, 
hemibiotrophic, and necrotrophic pathogens would 
allow a better understanding of the link between the 
pathogen lifestyle and plant iron status. In addition, it 

would be interesting to know whether the plant Fe sta-
tus affects pathogen lifestyle, which could also affect 
pathogenesis. In addition, it is meaningful to study how 
the pathogens sense the intracellular and extracellu-
lar iron status. Iron homeostasis genes are considered 
crucial elements with complex roles in plant immunity, 
whereby iron homeostasis genes could be underlying 
resistance-related genes in crops. Crops could be engi-
neered to overexpress Fe homeostasis genes that posi-
tively affect plant disease resistance without yield loss.

Iron-limiting soils are widespread, causing significant 
losses in plant growth and productivity. Rhizosphere 
microbes have great potential for improving plant 
iron nutrition under iron-limited conditions. Under 
iron-limited conditions, plant-secreted coumarin com-
pounds are beneficial mediators of plant-microorgan-
ism interactions. These specialized metabolites alter 
the composition of root microbiota and are necessary 
for microbiota-mediated plant iron uptake and immune 
regulation (Verbon et al. 2017; Schmidt et al. 2020). In 
Arabidopsis, variation in coumarin production has been 
shown to correlate with performance under iron limita-
tion (Siwinska et al. 2014; Tsai et al. 2018). Rhizosphere 
microbes improve the performance of iron-limited 
plants dependent on plant iron import and secretion 
of the coumarin (Harbort et  al. 2020). These findings 
show that the root microbiota is an integral component 
of plant edaphic adaptation to growth in iron-limiting 
soil. Root-secreted coumarins are inducible under iron 
starvation and mediate an interaction between the host 
and commensals that improves host iron nutrition. A 
better knowledge of these complex interactions and 
their monitoring will aid the improvement of crop pro-
duction in iron-limiting soil.
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