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Abstract

The integration of molecular markers in the realm of potato genetics has opened new avenues for accelerating geno-
type analysis and developing improved varieties. Many markers linked to important features have been discovered

so far and are consistently distributed across 12 chromosomes (X =12) of potato. Notably, the genes allied to disease
resistance stand out as significant and prevalent. Molecular markers associated with these genes have revolutionized
selection processes, making them faster and more effective. Besides, advanced technologies such as kompetitive
allele-specific PCR, high-resolution melting assay, SNP-array, genotyping by sequencing, and genome-wide associa-

tion study, are emphasizing the use of those molecular markers with greater accuracy to detect R genes aligning
with the phenotypes. This review discusses advances in potato breeding for resistance against common stresses,
focusing on progress made through molecular marker-assisted selection.
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Background

Potato, Solanum tuberosum L, is an associate of the
Solanaceae family and one of the world’s top four widely
grown crops. The appeal of potatoes lies in their nutri-
tious content and high production rate per unit of time
and area, making them particularly valuable in underde-
veloped nations (Islam et al. 2022). Apart from being a
staple food, potatoes are widely utilized in various indus-
tries for the production of a diverse range of products.
Furthermore, its vast range of applications, including
food, alcohol, starch-based products, and raw materials,
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have made it quite popular in industrialized countries
(Awasthi and Verma 2017). Owing to the vital impor-
tance of potato, it is imperative to enhance potato pro-
duction. Its yield potential, on the other hand, is often
reduced due to its high susceptibility to numerous dis-
ease invasions including various soil-borne pathogens
and viruses (Awasthi and Verma 2017; Chakrabarti et al.
2022). Such infestations increase the use of fungicides
or insecticides for disease management which reduces
the grower’s profit margins (Islam et al. 2018). In addi-
tion to biotic pressures, abiotic factors, such as drought,
low temperature, and salinity, have caused challenges for
producers during potato cultivation (Kikuchi et al. 2015).
Therefore, both biotic and abiotic factors play major roles
as stressors for potato cultivation. Subsequently, identify-
ing molecular markers that are used to screen potatoes
for resistance to these stresses, can be a remedy to over-
come those stresses (Mangal et al. 2023).

However, among the various stresses, late blight (LB),
caused by Phytophthora infestans, is one of the most
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prevalent and disruptive diseases that affect potato cul-
tivation worldwide (Islam et al. 2022). In the severely
affected potato field, LB can cause deprivation of yield
by 70-100% (Islam et al. 2018). In order to lessen the
impact of the disease, a significant amount of fungicides
was applied, which resulted in increasing the cost of 6.7
billion USD using fungicides for growers (Seidl Johnson
et al. 2015). Moreover, potato viruses, such as potato
virus Y (PVY), potato leaf roll virus (PLRV), potato virus
M (PVM), potato virus S (PVS), potato virus X (PVX),
and potato virus A (PVA), are other disease-causing
agents that have also a significant impact on yield. Hence,
minimizing the risks in potato production by viruses is
justifiably a crucial concern in the breeding of pota-
toes (Bhardwaj et al. 2019; Slater et al. 2020; Kumar
et al. 2022). Furthermore, potato cyst nematodes (PCN)
caused by Globodera rostochiensis and Globodera pal-
lida (Price et al. 2021), and root-knot nematodes caused
by Meloidogyne sp. (Khan et al. 2023), affect the growth
rate and physiology of potatoes, respectively, resulting
in weight loss. However, to reduce the disease impact of
nematodes, farmers usually apply granular nematicides
(Grabau and Noling 2019) which cost a lot of money.

Like biotic stressors, potato is also more vulnerable
to abiotic stressors than other plants. It is anticipated
that, by the year 2050, the anticipated reduction in over-
all potato yield may potentially reach as high as 32% as
a consequence of the influence of abiotic stress factors
(Demirel 2023). Drought and salinity tolerance are said
to be extremely low in potatoes (Kikuchi et al. 2015) due
to their inability to acclimate to low temperatures and
potato seedlings stop growing below 7 °C and experi-
ence chilling, frost, and death below —0.8 °C, -2 °C, and
—3 °C, respectively (Yan et al. 2021). Besides, the rising
temperatures and environmental pressures threaten the
existence of wild potato relatives, which are crucial gene
pools for breeding new potato varieties adapted to abi-
otic stress (Hussain 2016). In light of the aforementioned
challenges, it is imperative for plant breeders to focus
their efforts on developing crop varieties resistant to both
biotic and abiotic stresses. The convergence of pathogens
and climate change presents a dual challenge to crop cul-
tivation, constraining yields through a combination of
biotic and abiotic stresses (Haq et al. 2022).

Field evaluation and phenotypic screening in tradi-
tional breeding can span 10-15 years due to the need
for multi-generational backcrossing (Tiwari et al. 2013).
On the other hand, employing genotype analysis using
a molecular marker to detect and select suitable species
with desired traits has grown increasingly popular day
by day (Caruana et al. 2019). This selection approach is
known as marker-assisted selection (MAS). MAS uses
a significantly cheap selection strategy per cultivar in
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potato breeding compared to traditional phenotypic
screening in the field (Slater et al. 2020). MAS identifies
molecular markers, which corresponds to genes display-
ing the desired trait, from the genome of a particular
species (Simko et al. 2013). It is also more reliable and
precise since this method is independent of environmen-
tal conditions. Furthermore, the genetic map of potatoes
is an integral part of the identification of molecular mark-
ers that are connected to the desired trait such as resist-
ance to a certain disease (Caruana et al. 2019). Molecular
markers can also be designed to identify quantitative trait
loci (QTL), which are genetic loci responsible for con-
trolling specific quantitative traits such as yield and tuber
quality (Habe et al. 2019; Fenstemaker et al. 2023).

Hence, molecular markers can be used along with tra-
ditional breeding technology to pinpoint the exact geno-
type that expresses the desired attribute, such as disease
resistance (Fig. 1). An informative marker has a strong
relationship between the phenotypic trait and the gene
and is close to the specific locus. Markers, such as sim-
ple sequence repeats (SSR), restriction fragment length
polymorphism (RFLP), amplified fragment length poly-
morphism (AFLP), sequence characterized amplified
regions (SCAR), and cleaved amplified polymorphic
sequence (CAPS), are the well-known molecular mark-
ers currently utilized in potato breeding (Kumar and Jor-
ben et al. 2023). Furthermore, high-resolution melting
analysis (HRM) is a relatively new technology that dis-
tinguishes amplicons of alleles with different haplotypes
(one or more SNPs) (Nie et al. 2016; Meiyalaghan et al.
2018). HRM could detect homozygosity of morphologi-
cal and genetic features in a single genetic map and iden-
tify resistant genes against numerous diseases (Nie et al.
2018).

However, it is critical to identify the exact disease-
resistance gene using gene-specific markers. Several
researches have been undertaken on different potato
virus-resistant gene markers, including PVY (Bhardwaj
et al. 2019; Slater et al. 2020), PLRV (Mihovilovich et al.
2014; Yermishin et al. 2016), and PVX (Fuentes et al.
2021; Liu et al. 2021). Additionally, a large number of
researchers have generated LB-resistant potato varieties
where the resistance genes’ sources were taken mostly
from potato wild-type varieties, S. demissum (6x), S. ber-
thaultii (2x), and S. Stoloniferum (4x) (Tiwari et al. 2013;
Ramakrishnan et al. 2015). Such resistant genes against
LB include RI (Ballvora et al. 2002; Khavkin et al. 2010;
Rogozina et al. 2021), R2 (Lokossou et al. 2009; Sokolova
et al. 2014; Rogozina et al. 2021), R3 (a/b) (El-Kharbotly
et al. 1996; Tiwari et al. 2013; Rogozina et al. 2021), Rpi-
smira 1 & 2 (Jo et al. 2011; Tomczynska et al. 2014),
Rpi-btl (Oosumi et al. 2009; Ramakrishnan et al. 2015),
Rpi-blb1 (Naess et al. 2000; Tiwari et al. 2013), Rpi-ber
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Fig. 1 Harnessing the potato gene pools for enhanced resistance to biotic and abiotic stresses in new cultivars

(Park et al. 2009; Islam et al. 2018),and so on. Similarly,
different resistant genes against potato cyst nematodes
have also been reported including H1 (Ellenby 1952;
Asano et al. 2012; Chekushkina et al. 2020), H2 (Strachan
et al. 2019), H3 (Bradshaw et al. 1998), GroV1 (Jacobs
et al. 1996), Grol (Barone et al. 1990), and Gpa2 (Asano
et al. 2012).

Thir review focuses on addressing abiotic and biotic
stress factors affecting potato cultivars. The main objec-
tive is to provide insights into resistance genes, their
sources, and associated markers that can aid in identify-
ing potato species resistant to common diseases and key
abiotic factors. By doing so, it aims to expedite the cul-
tivar selection process, enabling more efficient breeding
prograns and advancements in potato breeding.

Molecular markers associated with biotic
stress-resistant genes in potato

Virus resistance genes and linked markers

Viral infections can be detrimental to crop production,
resulting in reduced yields as the severity of the disease
increases (Tiwari et al. 2022). There are approximately
50 viruses that can infect Solanum at various stages of
growth and among them, six potato viruses are the most
prominent due to their devastating yield impact (Kreuze
et al. 2020). PVY is identified to be the deadliest virus
for potatoes as it can decrease the yield from 30 to 80%.
PLRYV, the second most destructive disease, can reduce
yield loss by up to 20 million tonnes per year (Kreuze

et al. 2020). On the other hand, the disease symptoms
appear to increase in severity depending on certain com-
binations of viruses; such as the combinations between
the PVY, PVS, PVX, PVM, and PVA (Kreuze et al. 2020).
As a result, constant efforts were carried out to intro-
duce resistance genes into commercial potatoes to lessen
the harm (Ramakrishnan et al. 2015). Virus-resistance
genes have been found in a variety of wild potato spe-
cies. Extreme resistance genes for PVY have been iso-
lated from S. Stoloniferum (4X) or S. tuberosum ssp.
andigena (2X) (Hamalainen et al. 1998; Ramakrishnan
et al. 2015). R genes, Ry,,, and Ry, have been shown
to exhibit resistance against PVY (Table 1), localized on
chromosomes XI and XII (Fig. 2), are from S. tuberosum
ssp. andigena (2X) and S. stoloniferum (4x), respectively
(Ramakrishnan et al. 2015; Yermishin et al. 2016). Moreo-
ver, R genes, Ny,,. and Ry, are located on chromosomes
IV and IX, from S. berthaultii (2X) and S. Chacoense
(2X), respectively (Table 2) (Park et al. 2005; Ram-
akrishnan et al. 2015). Hence, various molecular markers
linked to such R genes have been developed to identify
resistant potato varieties (Ramakrishnan et al. 2015). For
instance, markers SC895 and TG506 are connected with
N-genes, Ny_; and Ny,,, known to exhibit hypersensi-
tivity to the potato virus Y ( Additional file 1: Table S1).
On the other hand, markers RYSC3 (Sharma et al. 2014;
Kneib et al. 2017; Bhardwaj et al. 2019; Slater et al. 2020),
M45 (Kneib et al. 2017; Bhardwaj et al. 2019; Slater et al.
2020), ADG1, and ADG2 (Hamalainen et al. 1998) are
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Table 1 Association of markers with viruses, late blight, and potato cyst nematode resistance genes in potato

SL Marker Type Marker Name Forward sequence Reverse sequence Gene ER References
1 SSR STM 0003 GGAGAATCATAACAACCAG AATTGTAACTCTGTGTGTGTG Ry, PVY  Bhardwaj et al. (2019), Slater
etal. (2020)
2 ESTS Yes3-3A TAACTCAAGCGGAATAACCC  AAATTCACCTGTTTACATGCT Ry, PVY  Bhardwajet al. (2019), Song
TCTTGTG and Schwarzfische, (2008)
3 ESTS Yes3-3B TAACTCAAGCGGAATAACCC  CATGAGATTGCCTTTGGTTA RYio PVY  Song and Schwarzfische (2008)
4 SCAR RYSC3 ATACACTCATCTAAATTT AGGATATACGGCATCATTTTT  Ry,qq PVY  Kneib et al. (2017), Sharma
GATGG CCGA etal. (2014)
5 AFLP M6 ACATGATATAAGTTGATATGG  GTGCTTTGTCTTTTCTGC RYadg PVY  Herrera et al. (2018)
AGAAT ATGTA
6  AFLP M45 GACTGCGTACATGCAGCT GATGAGTCCTGAGTAAGGA RYadg PVY  Kneib etal. (2017), Slater et al.
(2020)
7 SIS RY186 TGGTAGGGATATTTTCCTTAGA  GCAAATCCTAGGTTATCA RY che PVY  Biryukova et al. (2020),
ACTCA Rogozina et al. (2019)
8 SCAR Ry364 CTATTATAAGTCTGGTACTAG ~ GGCTATATGTTCAATGAATTC Ry PVY  Klimenko et al. (2019)
GACG ATGCTAA
9 PCR 5Rx1 TCAGGGCAAAACCCTAACAC  ATCGGCCTAGAGTGACATCG  Rxi PVX  Shaikhaldein et al. (2018)
10 PCR PVX ATCTTGGTTTGAATACATGG CACAATATTGGAAGGATTCA  Rx1 PVX  Morietal. (2011)
11 PCR 106Rx2 GGAGAAATCCTGCAATGTAAC  CTTGTCAAAGAAAGAAGG Rx2 PVX  Shaikhaldein et al. (2018)
ccT
12 RFLP GP21 GGTTGGTGGCCTATTAGC AGTGAGCCAGCATAGCAT Rx2 PVX  De Jong etal. (1997)
CATGC TACTTG
13 CAPS SC811 CGAACAAAATACGTAATGCAT  GACCT ATATCAGTCCCTTCT Ns PVS  Flis et al. (2005)
TGAATAA AATCCACTAT
14 SCAR SCG17-321 ACGACCGACACTCAAATTTGT  GATGCCCCGACAGAGGAAG — Ns PVS  Bhardwaj et al. (2019)
ACAAGAAA
15 SCAR N127 TAGAGAGCATTAAGAAGCTGC  TTTTGCCTACTCCCGGCATG PLRV1 PLRV  Marczewski et al. (2004), Yer-
mishin et al. (2016)
16 SSR R1 CACTCGTGACATATCCTCACTA  CAACCCTGGCATGCCACG R1 LB Sokolova et al. (2014), Tiwari
etal. (2013)
17 SSR R2 ATGGCTGATGCCTTTCTATCA  TCACAACATATAATTCCGCTTC  R2 LB Kim et al. (2012)
TTTGC
18 SSR SHa ATCGTTGTCATGCTATGAGAT  CTTCAAGGTAGTGGGCAGTAT = R3a LB Huang et al. (2005)
TGTT GCTT
19 SSR R3b4 GTCGATGAATGCTATGTTTCT ~ ACCAGTTTCTTGCAATTCCAG  R3b LB Rietman (2011)
CGAGA ATTG
20 SCAR CosA CTCATTCAAAATCAGTTT GAATGTTGAATCTTTTTGTGA R LB Bhardwaj et al. (2019), Sharma
TGATC AGG etal. (2014)
21 SSR 45/ Xl AGAGAGGTTGTTTCCGAT TCGTTGTAGTTGTCATTC Rpi-Smiral LB Islam et al. (2022), Tomczynska
AGACC CACAC etal. (2014)
22 SSR 184-81 CCACCGTATGCTCCGCCGTC GTTCCACTTAGCCTTGTCTTG  Rpi-Smira2 LB Blatnik et al. (2022)
CTCA
23 SCAR N146 AAGCTCTTGCCTAGTGCTC AGGCGGAACATGCCATG HI1 PCN  Asanoetal. (2012)
24 SCAR N195 TGGAAATGGCACCCACTA CATCATGGTTTCACTTGTCAC  HI PCN  Chekushkina et al. (2020)
25 SCAR 57R TGCCTGCCTCTCCGATTTCT GGTTCAGCAAAAGCAAGG H1 PCN  Finkers-Tomczak et al. (2009)
ACGTG
26 SCAR Grol-4 TCTTTGGAGATACTGATTCTCA  CGACCTAAAATGAAAAGC Grol-4 PCN  Asanoetal. (2012)
ATCT
27 STS Gpa2-2 GCACTTAGAGACTCATTCCA  ACAGATTGTTGGCAGCGAAA  Gpa2 PCN  Asanoetal. (2012)

ER Extreme Resistance, PVY potato virus Y, PVX potato virus X, PVA potato virus A, PVS potato virus S, PLRV potato leafroll virus, LB late blight, PCN potato cyst
nematode

associated with the R gene Ry, ,; GP122 (Valkonen et al.
2008; Lopez-Pardo et al. 2013), STO4 (Cernak et al.
2008), Yes3-3A (Song and Schwarzfischer 2008; Bhardwaj

et al. 2019), and Yes3-3B (Song and Schwarzfischer 2008)
are linked with the R gene Ry,,; and markers RY186
(Kneib et al. 2017; Rogozina et al. 2019; Biryukova et al.
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Fig. 2 Mapping genomic locations of biotic and abiotic stress resistance genes in potato on the 12 chromosomes

2020), CT220 (Rouppe Van der Voort et al. 2000), and
TG506 (Park et al. 2005) are associated with the R gene
Ry, (Table 1 and Additional file 1). These R genes have
been demonstrated to be extreme resistance to PVY.
Additionally, PVX resistance genes have been bred into
S. tuberosum (4X) from S. tuberosum ssp. andigena (2X)
mostly (Mori et al. 2011; Yermishin et al. 2016; Bhard-
waj et al. 2019) and in some cases from S. demissum (6X)

(Marano et al. 2002). The majority of N- genes mark-
ers are CAPS markers, where the Ny ; and Ny, confer
hypersensitivity towards PVY, whereas Nb-genes exhibit
PVX resistance (De Jong et al. 1997; Szajko et al. 2014).
In addition, the Nc,, gene and a new putative gene
Nz, were also reported to confer hypersensitive resist-
ance against PVY (Table 2) (Chik-Ali 2014). Further-
more, resistance genes for PVS were also bred from S.
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Sl Species Ploidy level Gene Biotic stress References

1 S. tuberosum ssp. adg 2X GpalVS,gg Potato cyst nematode Moloney et al. (2010)
H1 Gebhardt et al. (2006)
Grpl Finkers-Tomczak et al. (2009)
Gpa?2 Rouppe et al. (2000)
Nb De Jong et al. (1997)
Rx1 Bhardwajet al. (2019)
Ns PVS Flis et al. (2005)
N gy" PVA Hamalainen et al. (1998)
Ryadg PVY Ramakrishnan et al. (2015)
N adg Valkonen et al. (2008)

2 S. demissum 6x Ny-T/NY gons PVY Szajko et al. (2014)
GM339PVX PVX Marano et al. (2002)
GM637PVX Bhardwajet al. (2019)
Ny PVA Solomon and Barker (2001)
R2 Late blight Kim et al. (2012)
Rpi-mcd1 Tan et al. (2010)
R8 Tomczynska et al. (2014)
Rpi-Smira2 Tomczynska et al. (2014)
R3a Huang et al. (2005)

3 S. stoloniferum 4x Rysto PVY Cernak et al. (2008)
Ny, Solomon and Barker (2001)
R1 Late blight Bhardwaj et al. (2019)
Rpi-sto] Carlson-Nilsson et al. (2013)
R3b Rietman (2011)

4 S. chacoense 2% RY che PVY Sato et al. (2006)
Ny-2/Ny e Solomon and Barker (2001)
Nxgpe PVX Solomon and Barker (2001)

5 S. acaule 4% Rx2 PVX De Jong et al. (1997)

6 S. berthaultii 2% I\/yrb,* PVY Ahmadvand et al. (2012)
Rpi-berl Late blight Carlson-Nilsson et al. (2013)

7 S. bulbocastanum 2% Rpi-abt Late blight Kim et al. (2012)
Rb/RPI-bIbT Sokolova et al. (2014)
Rpi-bt1 Chen etal. (2017)

8 S. microdontum 2 Rpi-mcd1 Late blight Tanetal. (2010)

9 S.vernei 2% R1 Late blight De Jong (1997)
GroV1 Potato cyst nematode Biryukova et al. (2020)
RGp5-vrnHC Sattarzadeh et al. (2006)

10 S.phureja 2% R~ mirai Late blight Tomczynska et al. (2014)
Ny PVX Tommiska et al. (1998)

1 S. spegazzinii Grol-4 Potato cyst nematode Asano et al. (2012)
Grol Barone et al. (2004)

12 S. tuberosum 4% NCy PVY Chik-Ali (2014)
Nysor Chik-Ali (2014)

*Hypersensetive resistance gene to respective disease. PVY, potato virus Y; PVX, potato virus X; PVA, potato virus A; PVS, potato virus S

tuberosum ssp. andigena and Ns gene-affiliated markers
SC811, CP16, and SCG17-321 revealed extreme resist-
ance against PVS (De Jong et al. 1997; Bhardwaj et al.
2019). Moreover, the resistance for PVX is determined

by Rx genes, that is RxI and Rx2, which are localized
on chromosomes XII and V, respectively (Table 2) (De
Jong et al. 1997; Nie et al. 2016, 2018). Nevertheless,
research to date shows the resistance genes for PLRV are
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constituted in clusters of the PLRV.1 (Table 1) and PLRV.4
genes from chromosome XI, and PLRV.2 and PLRV.3 in
chromosomes VI and V, respectively or the Rladg gene
from chromosome V (Marczewski et al. 2004).

Late blight-resistant genes and linked markers
P infestans causes rapid mutation against the plant’s
defense mechanism leading to the most destructive dis-
ease known as potato late blight (LB), so it has been the
subject of ongoing and intense research for over a cen-
tury (Ramakrishnan et al. 2015; Ivanov et al. 2021). To
produce LB-resistant varieties, genes conferring resist-
ance to LB were introduced from various wild potato
varieties and cultivated species. As the LB-resistant genes
are linked to R genes, a screening method utilizing R
gene-associated markers was proposed to identify LB-
resistant potato species (Ramakrishnan et al. 2015).
Resistant gene RI has been discovered in S. demissum
(6x) (Ballvora et al. 2002; Bormann et al. 2004; Bhardwaj
et al. 2019; Rogozina et al. 2021), S. berthaultii (2x), S.
hjertingii (4X), S. stoloniferum (4X), and S. pinnatisectum
(2Xx) (Sokolova et al. 2014) (Table 2). This RI gene can
be detected with the markers CosA (Sharma et al. 2014;
Bhardwaj et al. 2019), R1 (Bhardwaj et al. 2019), R1-1205
(Sokolova et al. 2014), BA47f2 (Tiwari et al. 2013),
GP76 (Oberhagemann et al. 1999), GP179 (Tiwari et al.
2013), and GP 21 (De Jong et al. 1997; Tiwari et al. 2013)
(Table 1 and Additional file 1: Table S1). The RI gene
localized in chromosome V (Fig. 2) of S. demissum (6x)
was even introgressed in the cultivated species S. tubero-
sum (Ballvora et al. 2002; Ramakrishnan et al. 2015;
Rogozina et al. 2021). Apart from RI, several other sig-
nificant R genes found in S. demissum (6X) are R2, R3a,
and R3b (El-Kharbotly et al. 1996; Lokossou et al. 2009;
Sokolova et al. 2014; Rogozina et al. 2021). Resistant gene
R2 can be targeted through SSR marker R2 (Kim et al.
2012); R3a gene can be targeted by markers R3 (Bhard-
waj et al. 2019) and R3a (Sokolova et al. 2014); R3b gene
can be identified through the marker R3b (Sokolova et al.
2014). Tiwari et al. (2013) also mentioned that R3 genes
(both R3a and R3b) residing on chromosome XI can be
screened through R3-1380 (Sokolova et al. 2014), SHa
(Huang et al. 2005), and R3b4 (Rietman 2011) markers.
Other common sources for R2, R3a, and R3b genes can
be S. bulbocastanum (2X), and S. hougasii (6x) (Table 2)
(Sokolova et al. 2014; Sharma et al. 2014; Bhardwaj et al.
2019). Additionally, other LB-resistant R genes such as
Rpi-blb1 can be targeted either by SCAR markers like
Rb-1223 (Tiwari et al. 2013) and RB-629/638 (Sokolova
et al. 2014; Tiwari et al. 2013) or SSR markers such as
BLB1 (Chen et al. 2017) and 1521/518 (Additional file 1:
Table S1) (Tan et al. 2010; Islam et al. 2022) found in S.
bulbocastanum (2X), S. hjertingii (4X), S. berthaultii (2X),
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and S. stoloniferum (4x) (Table 2) (Sokolova et al. 2014).
Again, 45/XI can target the resistance gene Rpi-Smiral,
located in the same region as the gene R3 of Chromo-
some XI in S. phureja (2X) (Tomczynska et al. 2014;
Islam et al. 2022). Rpi_g,,,;,.»» @ different Rpi gene traced
on chromosome IX (Fig. 2) was undergoing field trial (Jo
et al. 2011; Tomczynska et al. 2014). The rest of the Rpi
genes, Rpi_ ,,; and Rpi_,, (Table 1), were found scattered
and constituting in different chromosomes such as chro-
mosomes VIII and X (Fig. 2) (Tiwari et al. 2013; Ram-
akrishnan et al. 2015; Islam et al. 2022).

Potato cyst nematode-resistant genes and linked markers
Potato cyst nematode (PCN) is a soil-borne disease
caused by golden nematode which has long been recog-
nized in Europe as a serious potato pest that reduces total
potato yield. An efficient solution to produce PCN-free
potatoes is to incorporate PCN-resistant genes in the cul-
tivars. Numerous PCN-resistant genes have been iden-
tified with varying degrees of resistance, genes Grol.4,
Gpa, Gpa4, Gpa5, Gpa6, Grpl, Grol.2, and Grol.3
were found with limited resistance to PCN, whereas HI
(Ellenby 1952), Grol (Barone et al. 1990), GroV1, and
Gpa?2 (Asano et al. 2012) genes (Table 1) express strong
resistance. Many of these genes are condensed in a pre-
cise location, including the QTL, consisting of Grpl,
Gpa3, GpaS, and Gpa6. HI, a heterozygous dominant
gene obtained from S. tuberosum ssp. andigena (2X)
located on chromosome V has been valuable commer-
cially for decades for its resistant durability to the Glo-
bodera rostochiensis (Gartner et al. 2021). The CP113
marker, which was created during ultra-high-density
genetic mapping of the HI locus (Bakker et al. 2004), was
found to be one of the most closely linked markers to
the HI gene, while other markers such as GP22, GP265,
GP270, GP78, and GP188, which are close in distance to
CP113, were also linked to the HI locus (Gebhardt et al.
2006). Besides, the markers, 239E4left, CT51 (Bakker
et al. 2004), N146, N195 (Asano et al. 2012), were also
found to be linked with the PCN extreme resistance gene
H1I (Table 1 and Additional file 1: Table S1). Again, Grol
was the first highly dominant G. rostochiensis resistant
gene, located on Chromosomes VII and IX (Fig. 2), and
was mapped with RFLP markers (Barone et al. 1990; Bar-
one et al. 2004). Moreover, the H2 nematode resistance
gene was mapped to chromosome V’s distal end in tetra-
ploid potato (Strachan et al. 2019).

Other potato disease-resistant genes and linked markers

Markers can help to screen for many other potato dis-
eases, such as potato warts, potato blackleg, potato
scab, and potato wilt. The PCR-based marker N125,
which is designed to target the resistance gene Senl (S.
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endobioticum pathotype 1), located at a position on chro-
mosome XI similar to Ryadg genes, can be used to screen
for potato wart resistance (Gebhardt et al. 2006). While
the AFLP markers can be used to test resistance against
potato blackleg disease through the blackleg disease-
resistant gene Eca, mapped to all 12 potato chromosomes
(Zimnoch-Guzowska et al. 2000). Moreover, researchers
have successfully identified a few genes conferring resist-
ance to Streptomyces, the causative agent for the com-
mon scab. Some resistant genes were reported to have
been isolated from chromosome XI of the S. chacoense
(2x) (Kaiser et al. 2020). Previously, a study conducted
by Flores et al. reported having accomplished to design
of Stxla and Stxlb markers for txtA and txtB genes
mapped from S. acidiscabies (Flores-Gonzalez et al.
2008). Furthermore, 4 PCR-based primer pairs, namely
Scabl and Scabll, Turgl and Turgll, Aurl andAurll, pA
and pH’ have been developed for genes that confer resist-
ance to S. turgidiscabies and S. scabies in potato species
S. tuberosum (Lehtonen et al. 2004). The resistance genes
gBWR-2, gBWR-3, and qgBWR-4, which protect pota-
toes from bacterial wilt (BW) caused by Ralstonia sola-
nacearum, were found in potato chromosomes III, VII,
and X, respectively (Habe et al. 2019). To find the BW-
resistant genes in potatoes, researchers used a variety of
markers, including RAPD, SSR, and AFLP. SSR marker
STMO0032 on chromosome XII and three RAPD markers,
OPGO05y49, OPR11g,,, and OPO13,,,, were discovered to
be tightly connected to the bacterial wilt-resistant gene
in potatoes (Patil et al. 2012). Additionally, the suppres-
sion subtractive hybridization and microarray techniques
were applied by Li et al. (2010) to identify genes that con-
fer resistance to R. solanacearum in potato and STASI,
STC84, and STD62, as well as STSN2 (STM21), had been
identified as significant resistance genes to BW. Besides,
expression of the genes snakinl and snakin2 genes in
potato were also found to boost BW resistance (Li et al.
2010). Alternatively, over-expression of these two genes
Snakin-1 and Snakin-2 encoded the proteins Gibberel-
lin Stimulated-Like 1 (Jacobs et al. 2022) and Gibberel-
lin Stimulated-Like 2 (Mohan et al. 2014), respectively,
in transgenic potato, were also conferred resistance to
blackleg disease caused by Pectobacterium atrosepticum.
In addition, early blight, caused by Alternaria solani, is
also one of the major diseases in potato worldwide, and
up to 54% vyield loss occurs without fungicide appli-
cation (Abuley et al. 2018; Xue et al. 2022). The early
blight resistance in potato is highly heritable, with high
broad sense and narrow sense heritability. Two wild
potato species, S. berthaultii and S. commersonii subsp.
malmeanum, exhibits promising resistance against early
blight (Wolters et al. 2021). Genetic mapping-identified
QTLs on chromosomes V and VII contribute to early
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blight resistance, providing potential markers for breed-
ing resistant varieties (Xue et al. 2022). Although earlier
studies had limitations such as small population sizes and
incomplete linkage maps, the development of high-den-
sity SNP marker linkage maps has made QTL mapping
more convenient in potato research (Odilbekov et al.
2020). Further research is needed to determine more
accurate genetic basis resistance to early blight.

In addition to the aforementioned diseases, the potato
confronts a spectrum of other significant maladies that
exert substantial economic and agricultural impact.
These afflictions include pink rot (Phytophthora eryth-
roseptica), pythium leak (Pythium ultimum), dry rot
(Fusarium oxysporumy), soft rot (Dickeya dianthicola,
Pectobacterium spp.), silver scurf (Helminthosporium
solani), and black dot (Colletotrichum coccodes). These
phytopathogens manifest their detrimental influence pre-
dominantly during the storage phase of potatoes. Hence,
Osusky et al. (2004) found that MsrA3, a modified form
of the naturally occurring antimicrobial cationic pep-
tide temporin A, when expressed in potato plants, con-
veys strong resistance to late blight and pink rot. On
the other hand, Thompson et al. (2007) reported that a
potato clone derived from S. berthaultii and S. etubero-
sum exhibited resistance to P. erythroseptica and P. ulti-
mum. Besides, the inheritance of dry rot resistance was
investigated by Sobkowiak et al. (2022) in two diploid
potato hybrid populations, leading to the identification
of multiple QTLs on chromosomes II, VII, IX, and XII,
including the first mapping of loci affecting tuber dry
rot resistance in the potato genome. However, the dry
rot resistance genes might derived from the wild-type
potato S. chacoense, S. microdontum, and S. gourlayi as
they were shown extreme resistance to dry rot (Sobkow-
iak et al. 2022). Moreover, consistent QTLs for soft rot
resistance from wild potato S. microdontum were spotted
in chromosomes I, III, and V, responsible for resistance
to Dickeya dianthicola (Fenstemaker et al. 2023). Hence-
forth, increasing more extensive research activities on
those diseases will help in understanding the molecular
underpinnings of resistance mechanisms against these
diverse pathogens which is pivotal for the development
of improved potato cultivars with enhanced storage
durability.

Molecular markers associated with abiotic stress
tolerance genes in potato

Drought tolerance genes and linked markers

A deficit in the water supply may adversely affect vari-
ous developmental stages of potatoes, especially lim-
iting their growth, reproduction, tuber quality, tuber
size, and yield (Anithakumari et al. 2011). Numerous
genes involved in carbohydrate metabolism, cellular
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communication, protein synthesis, ATP metabolism,
and cell signaling are upregulated or downregulated
when exposed to water stress (Ambrosone et al. 2011).
The expressions of such genes have been evaluated
within potato tissues under drought conditions and
adequate water conditions (Obidiegwu et al. 1999).
Using SNP markers revealed 23 QTLs related to
drought tolerance phenotypes (Anithakumari et al.
2011). Moreover, five specific genes, ACS3, ALDH,
ETRTF3, PARG, and PP2C, encoding 1l-aminocyclo-
propane-1-carboxylate synthase 3, aldehyde dehy-
drogenase, ethylene-responsive transcription factor,
poly (ADP-ribose) glycohydrolase, and protein phos-
phatase 2C, respectively, have been reported being
present in drought-sensitive cultivars. These ACS3,
ALDH, ETRTF3, PARG, and PP2C genes were dis-
covered on potato chromosomes I, II, IV, X, and XII
using SSR markers HRO_ACS3_1, HRO_ALDH_H,
HRO_ETRTF_5a_D, HRO_PARGH_1A_B, and HRO_
PP2C_1_B, respectively (Table 3) (Ghislain et al. 2009;
Schumacher et al. 2021). Furthermore, the positions of
these genes associated with drought resistance are not
fixed to one specific allele rather the locations vary in
alleles among different potato varieties, making them
ideal candidates for MAS as well as genetic diversity
analysis (Malosetti et al. 2007). Moreover, the presence
of an extra allele in drought-sensitive cultivars sug-
gests that the selection of cultivars against these alleles
will facilitate the selection of drought-tolerant varie-
ties (Schumacher et al. 2021).
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Cold tolerance genes and linked markers

The potato is a highland crop that grows in cold regions,
yet frost damage in cold climates is also a significant
issue in potato production. Cold stress stunts potato
growth and development, resulting in lower yields (Tu
et al. 2021). Even though there are some wild potato
species with cold tolerance characteristics yet a com-
mercial cultivar with such characteristics is yet to be
found. In terms of cold tolerance, S. commersonii (2x/3X)
showed supreme tolerance against cold and was potent to
resist frost and achieved tuber hardening in a tempera-
ture range from 2 to 12°C. Furthermore, S. acaule (4X)
showed remarkable resistance to cold stress whereas
S. tuberosum (4X), S. verrucosum (2X/3X/4X), and S.
stoloniferum (4x) showed the most sensitivity to cold
stress (Kikuchi et al. 2015; Ramakrishnan et al. 2015).
Besides, it was reported that S. tuberosum hybrids had
been made with S. brevidens and S. commersonii (2X/3X)
to get a cold stress-resistant breed (Orczyk et al. 2003).
Tu et al. (2021) conducted a study on the hybridization
of S. malmeanum (2x/3x), a wild species known for
its strong freezing tolerance, with the freeze-sensitive
commercial cultivar S. tuberosum, with the goal of cre-
ating improved varieties that are more tolerant to freez-
ing. And after hybridization via protoplast fusion, the
somatic hybrids were screened with eight SSR primers,
S215, ssr_165426, ssr_165497, ssr_165552, ssr_ 165648,
ssr_165659, S165, and ssr_166097. On the other hand,
some heat shock transcription factors (HSTF), StHsf004,
StHsf007, StHsf009, StHsf014, StHsf018, StHsf019, and
StHsf022 genes were found with potentiality against cold

Table 3 Correlation of SSR markers with drought and cold tolerance in potato

S/N Marker type Marker name Gene name* Tolerance References
1 SSR HRO_ACS3_1 ACS3 Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)
2 SSR HRO_ALDH_H ALDH Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)
3 SSR HRO_ETRTF_5a_D ETRTF3 Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)
4 SSR HRO_PARGH_TA_B PARG Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)
5 SSR HRO_PP2C_1_B PP2C Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)
- - Hsp90-2 Drought Ambrosone et al. (2011)
- - rgga Drought Ambrosone et al. (2011)
- - susy Drought Schafleitner et al. (2007)
6 SSR S215 - Cold Tuetal. (2021)
7 SSR S165 - Cold Tuetal. (2021)
8 SSR STHSF004_F_R StHsf004 Cold Tang et al. (2016)
9 SSR STHSFOO7_F_R StHsf007 Cold Tang et al. (2016)
10 SSR STHSFO09_F_R StHsf009 Cold Tang et al. (2016)
11 SSR STHSFO14_F_R StHsf014 Cold Tang et al. (2016)
12 SSR STHSFO18_F_R StHsf018 Cold Tang et al. 2016)
13 SSR STHSFO19_F_R StHsf019 Cold Tang et al. (2016)
14 SSR STHSF022_F_R StHsf022 Cold Tang et al. (2016)
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stress (Table 3 and Fig. 2). Previously, the roles of HSTFs
were confirmed for cold stress via RT-qPCR using spe-
cific markers named by their corresponding gene names
(Tang et al. 2016).

High throughput genotyping technologies

for potato disease resistance genes detection
Further research on technological advancements, and
high throughput technologies are being practiced for
unlocking the full potential of molecular markers in
developing improved disease-resistant potato (Fig. 3).
High throughput genotyping technologies such as geno-
typing by sequencing (GBS) was applied to discover
dense markers for detecting disease resistance and other
important traits in potato and a significant number of
SNP markers were identified and filtered to create a
high-quality subset (Caruana et al. 2019). In addition,
high throughput melting (HRM) assay was employed to
detect HI-linked resistance to potato cyst nematode. The
HRM assay utilized the markers TG689 and 57R-1P for
this purpose (Meiyalaghan et al. 2018). In another study
by Nie et al. (2018), the markers 5Rx1 and 106Rx2 were
utilized in HRM to identify the PVX resistance genes
RxI and Rx2, respectively. Nie et al. (2016) employed the
YES3-3A marker in an HRM assay to precisely locate
the PVY resistance gene Rysto in potato (Table 4). How-
ever, another high throughput genotyping technology,
namely kompetitive allele-specific PCR (KASP), is a rap-
idly emerging high throughput genotyping technology,
particularly popular for single nucleotide polymorphism
(SNP) based analyses. It is a homogeneous and fluores-
cence-based genotyping variant of the PCR method. In
the realm of potato genotyping, numerous studies have
already reported the successful application of KASP. For
instance, Sood et al. (2022), Kante et al. (2021), and Caru-
ana et al. (2021) have utilized KASP to confirm the pres-
ence of resistance genes Ry,,, and Ry, against potato
virus Y, employing the marker M6 and YES3-3A, respec-
tively (Table 4). Additionally, KASP has proven valuable
in identifying various late blight resistance genes, includ-
ing Rpi_.,,; (Ram et al. 2018), R2 (Meade et al. 2020),
Rpi 5 (Karki et al. 2021), R8 (Sood et al. 2022), and RB/
Rpi_y,; (Sorensen et al. 2023), across different late blight-
resistant genotypes. Furthermore, KASP technology has
been effectively employed to detect potato cyst nematode
resistance genes H1, using the marker 57R (Meade et al.
2020) and H2, through the markers CPRISNP 01-11
(Sood et al. 2022). Indeed, the SNP array is another pow-
erful SNP-based genotyping technology that has been
effectively utilized in potato genotyping, particularly
in the detection of resistance genotypes. Prodhomme
et al. (2020) employed the SNP array to identify specific
markers, namely hs-SNP, STM1002-24, and St1004-96,
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associated with the potato wart disease resistance genes
Senl (Prodhomme et al. 2020), Rse-Ivb, and Rse-Vla
(Obidiegwu et al. 2015), respectively. Moreover, the SNP
array has also been instrumental in detecting the marker
MG-64-17, which is associated with the PVY resistance
gene Ry, (Table 4), as demonstrated by Li et al. (2022).
Nonetheless, genome-wide association studies (GWAS)
have been conducted to identify the genomic regions
associated with resistance in potato such as GWAS was
employed to locate genetic markers linked to resistance
against late blight (Prakash et al. 2020; Wang et al. 2020)
and potato common scab (Yuan et al. 2020).

On the other hand, the current understanding of geno-
typing technologies for detecting abiotic stress tolerance
genes in potato is relatively limited. However, Anithaku-
mari et al. (2011) made significant strides in this field by
identifying several SNP-based markers associated with
drought stress in potatoes. Notably, they observed that
the gene markers PotSNPs (PotSNP838, PotSNP67) were
co-located with the root-to-shoot ratio QTL, suggesting
a potential link between these markers and improved
drought tolerance in potatoes. Since plants with an
increased root-to-shoot ratio are reliable indicators of
drought adaptation. Besides, researchers demonstrated
proactive efforts in a separate study by transferring the
AtDREBIA gene from Arabidopsis thaliana to tetraploid
potatoes. This gene was found to function as a transcrip-
tional factor, imparting enhanced protection against
various abiotic stresses, particularly drought and salt
(Watanabe et al. 2011). These findings underscore the
potential of genetic engineering to enhance abiotic stress
tolerance in potato crops. Moving forward, addressing
the challenges in this area will necessitate a more com-
prehensive exploration of potato genetic resources with
altered functions related to abiotic stress tolerance, par-
ticularly those sourced from wild potato species. Fun-
damental research efforts should focus on elucidating
the molecular mechanisms and physiological functions
of these tolerances, which will inform the development
of effective germplasm enhancement strategies using
genetic resources. Moreover, parallel efforts should
be directed towards harnessing exotic genes to aug-
ment the potato’s capacity to withstand extreme abiotic
stresses. Such scientific endeavors hold great promise
for the advancement of resilient potato varieties, bet-
ter equipped to thrive under challenging environmental
conditions.

Summary and conclusions

Even in tetraploid plants such as potatoes, molecular
markers help to transport valuable genes and allow for
the selection of superior genotypes. Potato disease resist-
ance molecular markers have revolutionized the field of
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Table 4 High-throughput genotyping technologies for the detection of potato disease resistance genes

Slno Genotyping Gene Marker Resistance/ References
technology Tolerance
1 HRM Rx1 5Rx1 PVX Nie et al. (2018)
Rx2 106Rx2
RYio YES3-3A PVY Nie et al. (2016)
H1 TG689 PCN Meiyalaghan et al. (2018)
57R-1P
2 KASP Ryadg M6 PVY Caruana et al. (2021), Kante
et al. (2021), Sood et al.
(2022)
M45 Caruana et al. (2021)
RYSC3 Caruana et al. (2021)
RYio YES3-3A Sood et al. (2022)
H1 57R PCN Meade et al. (2020)
H2 CPRISNP 01-11 Sood et al. (2022)
R2 R2 LB Meade et al. (2020)
Rpi-blb1 RB Sorensen et al. (2023)
R8 - Sood et al. (2022)
Rpi-cap1 - Ram et al. (2018)
3 SNP array RYehe M50 PVY Lietal. (2022)
Senl Hs-SNP Wart Prodhomme et al. (2020)
SenT-4/Rse-IVb STM1002-24 Obidiegwu et al. (2015)
Rse-Vla St1004-96
SFwrec PotSNP838 Drought Anithakumari et al. (2011)
phtrec PotSNP67
fmassRec PotSNP838
4 GWS R2 R2 LB Prakash et al. (2020)

HRM high resolution melting, KASP kompetitive allele specific PCR (KASP), SNP single nucleotide polymorphism, GWS genome wide sequence, PVY potato virus Y, PVX

potato virus X, LB late blight, PCN potato cyst nematode

agriculture by offering advanced tools for breeding and
potato improvement programs. However, resistance
genes for late blight (R1, R2, R3a, R3b, and Rpi-genes),
PVY (Ry,4p Ryy, and Ry,), PLRV (PLRVI), PVX (RxI
and Rx2), PVS (Ns), and PCN (H1, H2, Gpa2, Gorl-4, and
Gprl) are available in potato and these R genes linked
molecular markers are widely used in potato breeding for
the genetic gain against those destructive diseases (Asano
et al. 2012; Yermishin et al. 2016; Kneib et al. 2017;
Bhardwaj et al. 2019; Klimenko et al. 2019; Chekushkina
et al. 2020; Slater et al. 2020).

The benefits of molecular markers for enhancing
potato disease resistance are multifaceted. They offer
remarkable speed and precision in the breeding process,
allowing for the early identification of disease-resistant
plants. For instance, Sharma et al. (2014) successfully
employed molecular markers to identify elite germplasm
with resistance to late blight (R1, R2, and R3a), potato
virus Y (Ry,,, and Ry,,), and potato cyst nematode (H!
and Grol-4). Besides, marker-assisted selection (MAS)
facilitates the introduction of resistance genes into elite
cultivars without compromising desirable traits, while

simultaneously decreasing breeding costs and time
requirements, as reported by Bhardwaj et al. (2019) for
resistance to potato viruses (PVY, PVS, PVX, and PLRV).
Moreover, molecular markers enable the pyramiding of
multiple resistance genes, as demonstrated by Mori et al.
(2011) in their development of a multiplex PCR to spot
resistance genes for late blight, PVX, PVY, and PCN.
Similarly, another multiplex PCR protocol was developed
by Rogozina et al. (2019) to identify potato genotypes
for breeding R genes resistance to PVY (Ry,, Ry..)
PVX (Rx), PCN (HI and Grol-4), and potato wart (SenlI)
disease. This broadens genetic diversity and bolsters
resistance against various diseases. They also aid in the
conservation of genetic diversity by preserving rare and
unique disease-resistant genes in wild relatives, ensuring
the long-term sustainability of potato production in the
face of evolving disease pressures.

However, potato breeding for disease resistance using
molecular markers faces significant challenges in prac-
tical implementation. The diverse and complex nature
of potato diseases, combined with the indirect link
between molecular markers and resistance genes, leads
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to potential false results. Moreover, the tetraploid nature
of potatoes makes it difficult to identify and track genes,
which further affects the accuracy of marker-based
breeding. Addressing the challenges, several advanced
genotyping technologies have already been established
such as genotyping by sequencing (GBS), high-resolution
melting (HRM), kompetitive allele-specific PCR (KASP),
SNP array, genome-wide association studies (GWAS),
and so on. Those technologies offer several advantages
for potato breeding in terms of disease resistance. They
are (a) highly precise, reducing errors, and enhancing the
accuracy of genetic variation detection; (b) more sensi-
tive in identifying disease-associated genetic variations;
(c) possess superior resolution, enabling the detection of
subtle genetic variations linked to resistance genes; (d)
high-throughput, allowing for the simultaneous identifi-
cation of multiple resistance genes; (e) capable of detect-
ing numerous single nucleotide polymorphisms (SNPs)
across the genome, facilitating a comprehensive analysis
of genetic diversity and the discovery of new resistance
genes; (f) cost-effective and efficient, facilitating the
selection of disease-resistant potato varieties. Moreo-
ver, the unlabeled probe HRM assay has the capability
to detect allele dosage, which can be considered an addi-
tional advantage of advanced genotyping technologies
(Meiyalaghan et al. 2019).

Finally, it might be concluded that based on the molec-
ular markers’ researchers can perform high-throughput
technology like SNP-depended technologies, KASP,
HRM, target SNP-seq as well as develop new technolo-
gies to identify more efficient and specific resistance gene
locus for genotyping the potato breeding population
against different biotic and abiotic stresses.
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SCAR Sequence characterized amplified regions
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StHsf Heat shock transcription factor
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