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Abstract 

The integration of molecular markers in the realm of potato genetics has opened new avenues for accelerating geno-
type analysis and developing improved varieties. Many markers linked to important features have been discovered 
so far and are consistently distributed across 12 chromosomes (× = 12) of potato. Notably, the genes allied to disease 
resistance stand out as significant and prevalent. Molecular markers associated with these genes have revolutionized 
selection processes, making them faster and more effective. Besides, advanced technologies such as kompetitive 
allele-specific PCR, high-resolution melting assay, SNP-array, genotyping by sequencing, and genome-wide associa-
tion study, are emphasizing the use of those molecular markers with greater accuracy to detect R genes aligning 
with the phenotypes. This review discusses advances in potato breeding for resistance against common stresses, 
focusing on progress made through molecular marker-assisted selection.
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Background
Potato, Solanum tuberosum L, is an associate of the 
Solanaceae family and one of the world’s top four widely 
grown crops. The appeal of potatoes lies in their nutri-
tious content and high production rate per unit of time 
and area, making them particularly valuable in underde-
veloped nations (Islam et  al. 2022). Apart from being a 
staple food, potatoes are widely utilized in various indus-
tries for the production of a diverse range of products. 
Furthermore, its vast range of applications, including 
food, alcohol, starch-based products, and raw materials, 

have made it quite popular in industrialized countries 
(Awasthi and Verma 2017). Owing to the vital impor-
tance of potato, it is imperative to enhance potato pro-
duction. Its yield potential, on the other hand, is often 
reduced due to its high susceptibility to numerous dis-
ease invasions including various soil-borne pathogens 
and viruses (Awasthi and Verma 2017; Chakrabarti et al. 
2022). Such infestations increase the use of fungicides 
or insecticides for disease management which reduces 
the grower’s profit margins (Islam et  al. 2018). In addi-
tion to biotic pressures, abiotic factors, such as drought, 
low temperature, and salinity, have caused challenges for 
producers during potato cultivation (Kikuchi et al. 2015). 
Therefore, both biotic and abiotic factors play major roles 
as stressors for potato cultivation. Subsequently, identify-
ing molecular markers that are used to screen potatoes 
for resistance to these stresses, can be a remedy to over-
come those stresses (Mangal et al. 2023).

However, among the various stresses, late blight (LB), 
caused by Phytophthora infestans, is one of the most 
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prevalent and disruptive diseases that affect potato cul-
tivation worldwide (Islam et  al. 2022). In the severely 
affected potato field, LB can cause deprivation of yield 
by 70–100% (Islam et  al. 2018). In order to lessen the 
impact of the disease, a significant amount of fungicides 
was applied, which resulted in increasing the cost of 6.7 
billion USD using fungicides for growers (Seidl Johnson 
et  al. 2015). Moreover, potato viruses, such as potato 
virus Y (PVY), potato leaf roll virus (PLRV), potato virus 
M (PVM), potato virus S (PVS), potato virus X (PVX), 
and potato virus A (PVA), are other disease-causing 
agents that have also a significant impact on yield. Hence, 
minimizing the risks in potato production by viruses is 
justifiably a crucial concern in the breeding of pota-
toes (Bhardwaj et  al. 2019; Slater et  al. 2020; Kumar 
et al. 2022). Furthermore, potato cyst nematodes (PCN) 
caused by Globodera rostochiensis and Globodera pal-
lida (Price et al. 2021), and root-knot nematodes caused 
by Meloidogyne sp. (Khan et al. 2023), affect the growth 
rate and physiology of potatoes, respectively, resulting 
in weight loss. However, to reduce the disease impact of 
nematodes, farmers usually apply granular nematicides 
(Grabau and Noling 2019) which cost a lot of money.

Like biotic stressors, potato is also more vulnerable 
to abiotic stressors than other plants. It is anticipated 
that, by the year 2050, the anticipated reduction in over-
all potato yield may potentially reach as high as 32% as 
a consequence of the influence of abiotic stress factors 
(Demirel 2023). Drought and salinity tolerance are said 
to be extremely low in potatoes (Kikuchi et al. 2015) due 
to their inability to acclimate to low temperatures and 
potato seedlings stop growing below 7  °C and experi-
ence chilling, frost, and death below −0.8 °C, −2 °C, and 
−3  °C, respectively (Yan et  al. 2021). Besides, the rising 
temperatures and environmental pressures threaten the 
existence of wild potato relatives, which are crucial gene 
pools for breeding new potato varieties adapted to abi-
otic stress (Hussain 2016). In light of the aforementioned 
challenges, it is imperative for plant breeders to focus 
their efforts on developing crop varieties resistant to both 
biotic and abiotic stresses. The convergence of pathogens 
and climate change presents a dual challenge to crop cul-
tivation, constraining yields through a combination of 
biotic and abiotic stresses (Haq et al. 2022).

Field evaluation and phenotypic screening in tradi-
tional breeding can span 10–15  years due to the need 
for multi-generational backcrossing (Tiwari et  al. 2013). 
On the other hand, employing genotype analysis using 
a molecular marker to detect and select suitable species 
with desired traits has grown increasingly popular day 
by day (Caruana et  al. 2019). This selection approach is 
known as marker-assisted selection (MAS). MAS uses 
a significantly cheap selection strategy per cultivar in 

potato breeding compared to traditional phenotypic 
screening in the field (Slater et al. 2020). MAS identifies 
molecular markers, which corresponds to genes display-
ing the desired trait, from the genome of a particular 
species (Simko et  al. 2013). It is also more reliable and 
precise since this method is independent of environmen-
tal conditions. Furthermore, the genetic map of potatoes 
is an integral part of the identification of molecular mark-
ers that are connected to the desired trait such as resist-
ance to a certain disease (Caruana et al. 2019). Molecular 
markers can also be designed to identify quantitative trait 
loci (QTL), which are genetic loci responsible for con-
trolling specific quantitative traits such as yield and tuber 
quality (Habe et al. 2019; Fenstemaker et al. 2023).

Hence, molecular markers can be used along with tra-
ditional breeding technology to pinpoint the exact geno-
type that expresses the desired attribute, such as disease 
resistance (Fig.  1). An informative marker has a strong 
relationship between the phenotypic trait and the gene 
and is close to the specific locus. Markers, such as sim-
ple sequence repeats (SSR), restriction fragment length 
polymorphism (RFLP), amplified fragment length poly-
morphism (AFLP), sequence characterized amplified 
regions (SCAR), and cleaved amplified polymorphic 
sequence (CAPS), are the well-known molecular mark-
ers currently utilized in potato breeding (Kumar and Jor-
ben et  al. 2023). Furthermore, high-resolution melting 
analysis (HRM) is a relatively new technology that dis-
tinguishes amplicons of alleles with different haplotypes 
(one or more SNPs) (Nie et  al. 2016; Meiyalaghan et  al. 
2018). HRM could detect homozygosity of morphologi-
cal and genetic features in a single genetic map and iden-
tify resistant genes against numerous diseases (Nie et al. 
2018).

However, it is critical to identify the exact disease-
resistance gene using gene-specific markers. Several 
researches have been undertaken on different potato 
virus-resistant gene markers, including PVY (Bhardwaj 
et al. 2019; Slater et al. 2020), PLRV (Mihovilovich et al. 
2014; Yermishin et  al. 2016), and PVX (Fuentes et  al. 
2021; Liu et  al. 2021). Additionally, a large number of 
researchers have generated LB-resistant potato varieties 
where the resistance genes’ sources were taken mostly 
from potato wild-type varieties, S. demissum (6×), S. ber-
thaultii (2×), and S. Stoloniferum (4×) (Tiwari et al. 2013; 
Ramakrishnan et  al. 2015). Such resistant genes against 
LB include R1 (Ballvora et al. 2002; Khavkin et al. 2010; 
Rogozina et al. 2021), R2 (Lokossou et al. 2009; Sokolova 
et al. 2014; Rogozina et al. 2021), R3 (a/b) (El-Kharbotly 
et al. 1996; Tiwari et al. 2013; Rogozina et al. 2021), Rpi-
smira 1 & 2 (Jo et  al. 2011; Tomczynska et  al. 2014), 
Rpi-bt1 (Oosumi et al. 2009; Ramakrishnan et al. 2015), 
Rpi-blb1 (Naess et  al. 2000; Tiwari et  al. 2013), Rpi-ber 
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(Park et al. 2009; Islam et al. 2018),and so on. Similarly, 
different resistant genes against potato cyst nematodes 
have also been reported including H1 (Ellenby 1952; 
Asano et al. 2012; Chekushkina et al. 2020), H2 (Strachan 
et  al. 2019), H3 (Bradshaw et  al. 1998), GroV1 (Jacobs 
et al. 1996), Gro1 (Barone et al. 1990), and Gpa2 (Asano 
et al. 2012).

Thir review focuses on addressing abiotic and biotic 
stress factors affecting potato cultivars. The main objec-
tive is to provide insights into resistance genes, their 
sources, and associated markers that can aid in identify-
ing potato species resistant to common diseases and key 
abiotic factors. By doing so, it aims to expedite the cul-
tivar selection process, enabling more efficient breeding 
prograns and advancements in potato breeding.

Molecular markers associated with biotic 
stress‑resistant genes in potato
Virus resistance genes and linked markers
Viral infections can be detrimental to crop production, 
resulting in reduced yields as the severity of the disease 
increases (Tiwari et  al. 2022). There are approximately 
50 viruses that can infect Solanum at various stages of 
growth and among them, six potato viruses are the most 
prominent due to their devastating yield impact (Kreuze 
et  al. 2020). PVY is identified to be the deadliest virus 
for potatoes as it can decrease the yield from 30 to 80%. 
PLRV, the second most destructive disease, can reduce 
yield loss by up to 20 million tonnes per year (Kreuze 

et  al. 2020). On the other hand, the disease symptoms 
appear to increase in severity depending on certain com-
binations of viruses; such as the combinations between 
the PVY, PVS, PVX, PVM, and PVA (Kreuze et al. 2020).

As a result, constant efforts were carried out to intro-
duce resistance genes into commercial potatoes to lessen 
the harm (Ramakrishnan et  al. 2015). Virus-resistance 
genes have been found in a variety of wild potato spe-
cies. Extreme resistance genes for PVY have been iso-
lated from S. Stoloniferum (4X) or S. tuberosum ssp. 
andigena (2X) (Hamalainen et  al. 1998; Ramakrishnan 
et  al. 2015). R genes, Ryadg and Rysto, have been shown 
to exhibit resistance against PVY (Table 1), localized on 
chromosomes XI and XII (Fig. 2), are from S. tuberosum 
ssp. andigena (2×) and S. stoloniferum (4×), respectively 
(Ramakrishnan et al. 2015; Yermishin et al. 2016). Moreo-
ver, R genes, Nytbr and Rychc, are located on chromosomes 
IV and IX, from S. berthaultii (2X) and S. Chacoense 
(2X), respectively (Table  2) (Park et  al. 2005; Ram-
akrishnan et al. 2015). Hence, various molecular markers 
linked to such R genes have been developed to identify 
resistant potato varieties (Ramakrishnan et al. 2015). For 
instance, markers SC895 and TG506 are connected with 
N-genes, Ny-1 and Nytbr, known to exhibit hypersensi-
tivity to the potato virus Y ( Additional file 1: Table S1). 
On the other hand, markers RYSC3 (Sharma et al. 2014; 
Kneib et al. 2017; Bhardwaj et al. 2019; Slater et al. 2020), 
M45 (Kneib et al. 2017; Bhardwaj et al. 2019; Slater et al. 
2020), ADG1, and ADG2 (Hamalainen et  al. 1998) are 

Fig. 1 Harnessing the potato gene pools for enhanced resistance to biotic and abiotic stresses in new cultivars
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associated with the R gene Ryadg; GP122 (Valkonen et al. 
2008; Lopez-Pardo et  al. 2013), STO4 (Cernak et  al. 
2008), Yes3-3A (Song and Schwarzfischer 2008; Bhardwaj 

et al. 2019), and Yes3-3B (Song and Schwarzfischer 2008) 
are linked with the R gene Rysto; and markers RY186 
(Kneib et al. 2017; Rogozina et al. 2019; Biryukova et al. 

Table 1 Association of markers with viruses, late blight, and potato cyst nematode resistance genes in potato

ER Extreme Resistance, PVY potato virus Y, PVX potato virus X, PVA potato virus A, PVS potato virus S, PLRV potato leafroll virus, LB late blight, PCN potato cyst 
nematode

SL Marker Type Marker Name Forward sequence Reverse sequence Gene ER References

1 SSR STM 0003 GGA GAA TCA TAA CAA CCA G AAT TGT AAC TCT GTG TGT GTG Rysto PVY Bhardwaj et al. (2019), Slater 
et al. (2020)

2 ESTS Yes3-3A TAA CTC AAG CGG AAT AAC CC AAA TTC ACC TGT TTA CAT GCT 
TCT TGTG 

Rysto PVY Bhardwajet al. (2019), Song 
and Schwarzfische, (2008)

3 ESTS Yes3-3B TAA CTC AAG CGG AAT AAC CC CAT GAG ATT GCC TTT GGT TA Rysto PVY Song and Schwarzfische (2008)

4 SCAR RYSC3 ATA CAC TCA TCT AAA TTT 
GATGG 

AGG ATA TAC GGC ATC ATT TTT 
CCG A

Ryadg PVY Kneib et al. (2017), Sharma 
et al. (2014)

5 AFLP M6 ACA TGA TAT AAG TTG ATA TGG 
AGA AT

GTG CTT TGT CTT TTC TGC 
ATGTA 

Ryadg PVY Herrera et al. (2018)

6 AFLP M45 GAC TGC GTA CAT GCA GCT GAT GAG TCC TGA GTA AGG A Ryadg PVY Kneib et al. (2017), Slater et al. 
(2020)

7 STS RY186 TGG TAG GGA TAT TTT CCT TAGA GCA AAT CCT AGG TTA TCA 
ACTCA 

Rychc PVY Biryukova et al. (2020), 
Rogozina et al. (2019)

8 SCAR Ry364 CTA TTA TAA GTC TGG TAC TAG 
GAC G

GGC TAT ATG TTC AAT GAA TTC 
ATG CTAA 

Rychc PVY Klimenko et al. (2019)

9 PCR 5Rx1 TCA GGG CAA AAC CCT AAC AC ATC GGC CTA GAG TGA CAT CG Rx1 PVX Shaikhaldein et al. (2018)

10 PCR PVX ATC TTG GTT TGA ATA CAT GG CAC AAT ATT GGA AGG ATT CA Rx1 PVX Mori et al. (2011)

11 PCR 106Rx2 GGA GAA ATC CTG CAA TGT AAC CTT GTC AAA GAA AGA AGG 
CCT 

Rx2 PVX Shaikhaldein et al. (2018)

12 RFLP GP21 GGT TGG TGG CCT ATT AGC 
CATGC 

AGT GAG CCA GCA TAG CAT 
TAC TTG 

Rx2 PVX De Jong et al. (1997)

13 CAPS SC811 CGA ACA AAA TAC GTA ATG CAT 
TGA ATAA 

GACCT ATA TCA GTC CCT TCT 
AAT CCA CTA T

Ns PVS Flis et al. (2005)

14 SCAR SCG17-321 ACG ACC GAC ACT CAA ATT TGT 
ACA AGAAA 

GAT GCC CCG ACA GAG GAA G Ns PVS Bhardwaj et al. (2019)

15 SCAR N127 TAG AGA GCA TTA AGA AGC TGC TTT TGC CTA CTC CCG GCA TG PLRV1 PLRV Marczewski et al. (2004), Yer-
mishin et al. (2016)

16 SSR R1 CAC TCG TGA CAT ATC CTC ACTA CAA CCC TGG CAT GCC ACG R1 LB Sokolova et al. (2014), Tiwari 
et al. (2013)

17 SSR R2 ATG GCT GAT GCC TTT CTA TCA 
TTT GC

TCA CAA CAT ATA ATT CCG CTTC R2 LB Kim et al. (2012)

18 SSR SHa ATC GTT GTC ATG CTA TGA GAT 
TGT T

CTT CAA GGT AGT GGG CAG TAT 
GCT T

R3a LB Huang et al. (2005)

19 SSR R3b4 GTC GAT GAA TGC TAT GTT TCT 
CGA GA

ACC AGT TTC TTG CAA TTC CAG 
ATT G

R3b LB Rietman (2011)

20 SCAR CosA CTC ATT CAA AAT CAG TTT 
TGATC 

GAA TGT TGA ATC TTT TTG TGA 
AGG 

R1 LB Bhardwaj et al. (2019), Sharma 
et al. (2014)

21 SSR 45/ XI AGA GAG GTT GTT TCC GAT 
AGACC 

TCG TTG TAG TTG TCA TTC 
CACAC 

Rpi-Smira1 LB Islam et al. (2022), Tomczynska 
et al. (2014)

22 SSR 184–81 CCA CCG TAT GCT CCG CCG TC GTT CCA CTT AGC CTT GTC TTG 
CTC A

Rpi-Smira2 LB Blatnik et al. (2022)

23 SCAR N146 AAG CTC TTG CCT AGT GCT C AGG CGG AAC ATG CCATG H1 PCN Asano et al. (2012)

24 SCAR N195 TGG AAA TGG CAC CCA CTA CAT CAT GGT TTC ACT TGT CAC H1 PCN Chekushkina et al. (2020)

25 SCAR 57R TGC CTG CCT CTC CGA TTT CT GGT TCA GCA AAA GCA AGG 
ACGTG 

H1 PCN Finkers-Tomczak et al. (2009)

26 SCAR Gro1-4 TCT TTG GAG ATA CTG ATT CTCA CGA CCT AAA ATG AAA AGC 
ATCT 

Gro1-4 PCN Asano et al.  (2012)

27 STS Gpa2-2 GCA CTT AGA GAC TCA TTC CA ACA GAT TGT TGG CAG CGA AA Gpa2 PCN Asano et al. (2012)
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2020), CT220 (Rouppe Van der Voort et  al. 2000), and 
TG506 (Park et al. 2005) are associated with the R gene 
Rychc (Table 1 and Additional file 1). These R genes have 
been demonstrated to be extreme resistance to PVY.

Additionally, PVX resistance genes have been bred into 
S. tuberosum (4×) from S. tuberosum ssp. andigena (2×) 
mostly (Mori et  al. 2011; Yermishin et  al. 2016; Bhard-
waj et al. 2019) and in some cases from S. demissum (6X) 

(Marano et  al. 2002). The majority of N- genes mark-
ers are CAPS markers, where the Ny-1 and Nytbr confer 
hypersensitivity towards PVY, whereas Nb-genes exhibit 
PVX resistance (De Jong et al. 1997; Szajko et al. 2014). 
In addition, the Nctbr gene and a new putative gene 
Nztbr were also reported to confer hypersensitive resist-
ance against PVY (Table  2) (Chik-Ali 2014). Further-
more, resistance genes for PVS were also bred from S. 

Fig. 2 Mapping genomic locations of biotic and abiotic stress resistance genes in potato on the 12 chromosomes
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tuberosum ssp. andigena and Ns gene-affiliated markers 
SC811, CP16, and SCG17-321 revealed extreme resist-
ance against PVS (De Jong et  al. 1997; Bhardwaj et  al. 
2019). Moreover, the resistance for PVX is determined 

by Rx genes, that is Rx1 and Rx2, which are localized 
on chromosomes XII and V, respectively (Table  2) (De 
Jong et  al. 1997; Nie et  al. 2016, 2018). Nevertheless, 
research to date shows the resistance genes for PLRV are 

Table 2 Biotic stress resistance genes derived from wild species in potato breeding

*Hypersensetive resistance gene to respective disease. PVY, potato virus Y; PVX, potato virus X; PVA, potato virus A; PVS, potato virus S

Sl Species Ploidy level Gene Biotic stress References

1 S. tuberosum ssp. adg 2× GpaIVSadg Potato cyst nematode Moloney et al. (2010)

H1 Gebhardt et al. (2006)

Grp1 Finkers-Tomczak et al. (2009)

Gpa2 Rouppe et al. (2000)

Nb* De Jong et al. (1997)

Rx1 Bhardwajet al. (2019)

Ns PVS Flis et al. (2005)

Naadg
* PVA Hamalainen et al. (1998)

Ryadg PVY Ramakrishnan et al. (2015)

Nyadg
* Valkonen et al. (2008)

2 S. demissum 6× Ny-1/Nydms
* PVY Szajko et al. (2014)

GM339PVX PVX Marano et al. (2002)

GM637PVX Bhardwajet al. (2019)

Nadms
* PVA Solomon and Barker (2001)

R2 Late blight Kim et al. (2012)

Rpi-mcd1 Tan et al. (2010)

R8 Tomczynska et al. (2014)

Rpi-Smira2 Tomczynska et al. (2014)

R3a Huang et al. (2005)

3 S. stoloniferum 4× Rysto PVY Cernak et al. (2008)

Nysto
* Solomon and Barker (2001)

R1 Late blight Bhardwaj et al. (2019)

Rpi-sto1 Carlson-Nilsson et al. (2013)

R3b Rietman (2011)

4 S. chacoense 2× Rychc PVY Sato et al. (2006)

Ny-2/Nychc
* Solomon and Barker (2001)

Nxchc
* PVX Solomon and Barker (2001)

5 S. acaule 4× Rx2 PVX De Jong et al. (1997)

6 S. berthaultii 2× Nytbr
* PVY Ahmadvand et al. (2012)

Rpi-ber1 Late blight Carlson-Nilsson et al. (2013)

7 S. bulbocastanum 2× Rpi-abt Late blight Kim et al. (2012)

Rb/RPi-blb1 Sokolova et al. (2014)

Rpi-bt1 Chen et al. (2017)

8 S. microdontum 2× Rpi-mcd1 Late blight Tan et al. (2010)

9 S. vernei 2× R1 Late blight De Jong (1997)

GroV1 Potato cyst nematode Biryukova et al. (2020)

RGp5-vrnHC Sattarzadeh et al. (2006)

10 S. phureja 2× Rpi-Smira1 Late blight Tomczynska et al. (2014)

Nxphu
* PVX Tommiska et al. (1998)

11 S. spegazzinii Gro1-4 Potato cyst nematode Asano et al. (2012)

Gro1 Barone et al. (2004)

12 S. tuberosum 4× Nctbr
* PVY Chik-Ali (2014)

Nytbr
* Chik-Ali (2014)
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constituted in clusters of the PLRV.1 (Table 1) and PLRV.4 
genes from chromosome XI, and PLRV.2 and PLRV.3 in 
chromosomes VI and V, respectively or the Rladg gene 
from chromosome V (Marczewski et al. 2004).

Late blight‑resistant genes and linked markers
P. infestans causes rapid mutation against the plant’s 
defense mechanism leading to the most destructive dis-
ease known as potato late blight (LB), so it has been the 
subject of ongoing and intense research for over a cen-
tury (Ramakrishnan et  al. 2015; Ivanov et  al. 2021). To 
produce LB-resistant varieties, genes conferring resist-
ance to LB were introduced from various wild potato 
varieties and cultivated species. As the LB-resistant genes 
are linked to R genes, a screening method utilizing R 
gene-associated markers was proposed to identify LB-
resistant potato species (Ramakrishnan et al. 2015).

Resistant gene R1 has been discovered in S. demissum 
(6×) (Ballvora et al. 2002; Bormann et al. 2004; Bhardwaj 
et  al. 2019; Rogozina et  al. 2021), S. berthaultii (2×), S. 
hjertingii (4×), S. stoloniferum (4×), and S. pinnatisectum 
(2×) (Sokolova et  al. 2014) (Table  2). This R1 gene can 
be detected with the markers CosA (Sharma et al. 2014; 
Bhardwaj et al. 2019), R1 (Bhardwaj et al. 2019), R1-1205 
(Sokolova et  al. 2014), BA47f2 (Tiwari et  al. 2013), 
GP76 (Oberhagemann et  al. 1999), GP179 (Tiwari et  al. 
2013), and GP 21 (De Jong et al. 1997; Tiwari et al. 2013) 
(Table  1 and Additional file  1: Table  S1). The R1 gene 
localized in chromosome V (Fig. 2) of S. demissum (6×) 
was even introgressed in the cultivated species S. tubero-
sum (Ballvora et  al. 2002; Ramakrishnan et  al. 2015; 
Rogozina et  al. 2021). Apart from R1, several other sig-
nificant R genes found in S. demissum (6×) are R2, R3a, 
and R3b (El-Kharbotly et al. 1996; Lokossou et al. 2009; 
Sokolova et al. 2014; Rogozina et al. 2021). Resistant gene 
R2 can be targeted through SSR marker R2 (Kim et  al. 
2012); R3a gene can be targeted by markers R3 (Bhard-
waj et al. 2019) and R3a (Sokolova et al. 2014); R3b gene 
can be identified through the marker R3b (Sokolova et al. 
2014). Tiwari et al. (2013) also mentioned that R3 genes 
(both R3a and R3b) residing on chromosome XI can be 
screened through R3-1380 (Sokolova et  al. 2014), SHa 
(Huang et  al. 2005), and R3b4 (Rietman 2011) markers. 
Other common sources for R2, R3a, and R3b genes can 
be S. bulbocastanum (2×), and S. hougasii (6×) (Table 2) 
(Sokolova et al. 2014; Sharma et al. 2014; Bhardwaj et al. 
2019). Additionally, other LB-resistant R genes such as 
Rpi-blb1 can be targeted either by SCAR markers like 
Rb-1223 (Tiwari et  al. 2013) and RB-629/638 (Sokolova 
et  al. 2014; Tiwari et  al. 2013) or SSR markers such as 
BLB1 (Chen et al. 2017) and 1521/518 (Additional file 1: 
Table S1) (Tan et al. 2010; Islam et al. 2022) found in S. 
bulbocastanum (2×), S. hjertingii (4×), S. berthaultii (2×), 

and S. stoloniferum (4×) (Table 2) (Sokolova et al. 2014). 
Again, 45/XI can target the resistance gene Rpi-Smira1, 
located in the same region as the gene R3 of Chromo-
some XI in S. phureja (2×) (Tomczynska et  al. 2014; 
Islam et  al. 2022). Rpi-Smira2, a different Rpi gene traced 
on chromosome IX (Fig. 2) was undergoing field trial (Jo 
et al. 2011; Tomczynska et al. 2014). The rest of the Rpi 
genes, Rpi-bt1 and Rpi-ber (Table 1), were found scattered 
and constituting in different chromosomes such as chro-
mosomes VIII and X (Fig.  2) (Tiwari et  al. 2013; Ram-
akrishnan et al. 2015; Islam et al. 2022).

Potato cyst nematode‑resistant genes and linked markers
Potato cyst nematode (PCN) is a soil-borne disease 
caused by golden nematode which has long been recog-
nized in Europe as a serious potato pest that reduces total 
potato yield. An efficient solution to produce PCN-free 
potatoes is to incorporate PCN-resistant genes in the cul-
tivars. Numerous PCN-resistant genes have been iden-
tified with varying degrees of resistance, genes Gro1.4, 
Gpa, Gpa4, Gpa5, Gpa6, Grp1, Gro1.2, and Gro1.3 
were found with limited resistance to PCN, whereas H1 
(Ellenby 1952), Gro1 (Barone et  al. 1990), GroV1, and 
Gpa2 (Asano et al. 2012) genes (Table 1) express strong 
resistance. Many of these genes are condensed in a pre-
cise location, including the QTL, consisting of Grp1, 
Gpa3, Gpa5, and Gpa6. H1, a heterozygous dominant 
gene obtained from S. tuberosum ssp. andigena (2×) 
located on chromosome V has been valuable commer-
cially for decades for its resistant durability to the Glo-
bodera rostochiensis (Gartner et  al. 2021). The CP113 
marker, which was created during ultra-high-density 
genetic mapping of the H1 locus (Bakker et al. 2004), was 
found to be one of the most closely linked markers to 
the H1 gene, while other markers such as GP22, GP265, 
GP270, GP78, and GP188, which are close in distance to 
CP113, were also linked to the H1 locus (Gebhardt et al. 
2006). Besides, the markers, 239E4left, CT51 (Bakker 
et  al. 2004), N146, N195 (Asano et  al. 2012), were also 
found to be linked with the PCN extreme resistance gene 
H1 (Table 1 and Additional file 1: Table S1). Again, Gro1 
was the first highly dominant G. rostochiensis resistant 
gene, located on Chromosomes VII and IX (Fig. 2), and 
was mapped with RFLP markers (Barone et al. 1990; Bar-
one et  al. 2004). Moreover, the H2 nematode resistance 
gene was mapped to chromosome V’s distal end in tetra-
ploid potato (Strachan et al. 2019).

Other potato disease‑resistant genes and linked markers
Markers can help to  screen for many other potato dis-
eases, such as potato warts, potato blackleg, potato 
scab, and potato wilt. The PCR-based marker N125, 
which is designed to target the resistance gene Sen1 (S. 
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endobioticum pathotype 1), located at a position on chro-
mosome XI similar to Ryadg genes, can be used to screen 
for potato wart resistance (Gebhardt et al. 2006). While 
the AFLP markers can be used to test resistance against 
potato blackleg disease through the blackleg disease-
resistant gene Eca, mapped to all 12 potato chromosomes 
(Zimnoch‐Guzowska et al. 2000). Moreover, researchers 
have successfully identified a few genes conferring resist-
ance to Streptomyces, the causative agent for the com-
mon scab. Some resistant genes were reported to have 
been isolated from chromosome XI of the S. chacoense 
(2×) (Kaiser et  al. 2020). Previously, a study conducted 
by Flores et  al. reported having accomplished to design 
of Stx1a and Stx1b markers for txtA and txtB genes 
mapped from S. acidiscabies (Flores‐González et  al. 
2008). Furthermore, 4 PCR-based primer pairs, namely 
ScabI and ScabII, TurgI and TurgII, AurI andAurII, pA 
and pH’ have been developed for genes that confer resist-
ance to S. turgidiscabies and S. scabies in potato species 
S. tuberosum (Lehtonen et al. 2004). The resistance genes 
qBWR-2, qBWR-3, and qBWR-4, which protect pota-
toes from bacterial wilt (BW) caused by Ralstonia sola-
nacearum, were found in potato chromosomes III, VII, 
and X, respectively (Habe et  al. 2019). To find the BW-
resistant genes in potatoes, researchers used a variety of 
markers, including RAPD, SSR, and AFLP. SSR marker 
STM0032 on chromosome XII and three RAPD markers, 
 OPG05940,  OPR11800, and  OPO13770, were discovered to 
be tightly connected to the bacterial wilt-resistant gene 
in potatoes (Patil et al. 2012). Additionally, the suppres-
sion subtractive hybridization and microarray techniques 
were applied by Li et al. (2010) to identify genes that con-
fer resistance to R. solanacearum in potato and STA51, 
STC84, and STD62, as well as STSN2 (STM21), had been 
identified as significant resistance genes to BW. Besides, 
expression of the genes snakin1 and snakin2 genes in 
potato were also found to boost BW resistance (Li et al. 
2010). Alternatively, over-expression of these two genes 
Snakin-1 and Snakin-2 encoded the proteins Gibberel-
lin Stimulated-Like 1 (Jacobs et  al. 2022) and Gibberel-
lin Stimulated-Like 2 (Mohan et  al. 2014), respectively, 
in transgenic potato, were also conferred resistance to 
blackleg disease caused by Pectobacterium atrosepticum. 
In addition, early blight, caused by Alternaria solani, is 
also one of the major diseases in potato worldwide, and 
up to 54% yield loss occurs without fungicide appli-
cation (Abuley et  al. 2018; Xue et  al. 2022). The early 
blight resistance in potato is highly heritable, with high 
broad sense and narrow sense heritability. Two wild 
potato species, S. berthaultii and S. commersonii subsp. 
malmeanum, exhibits promising resistance against early 
blight (Wolters et  al. 2021). Genetic mapping-identified 
QTLs on chromosomes V and VII contribute to early 

blight resistance, providing potential markers for breed-
ing resistant varieties (Xue et al. 2022). Although earlier 
studies had limitations such as small population sizes and 
incomplete linkage maps, the development of high-den-
sity SNP marker linkage maps has made QTL mapping 
more convenient in potato research (Odilbekov et  al. 
2020). Further research is needed to determine more 
accurate genetic basis resistance to early blight.

In addition to the aforementioned diseases, the potato 
confronts a spectrum of other significant maladies that 
exert substantial economic and agricultural impact. 
These afflictions include pink rot (Phytophthora eryth-
roseptica), pythium leak (Pythium ultimum), dry rot 
(Fusarium oxysporum), soft rot (Dickeya dianthicola, 
Pectobacterium spp.), silver scurf (Helminthosporium 
solani), and black dot (Colletotrichum coccodes). These 
phytopathogens manifest their detrimental influence pre-
dominantly during the storage phase of potatoes. Hence, 
Osusky et al. (2004) found that MsrA3, a modified form 
of the naturally occurring antimicrobial cationic pep-
tide temporin A, when expressed in potato plants, con-
veys strong resistance to late blight and pink rot. On 
the other hand, Thompson et  al. (2007) reported that a 
potato clone derived from S. berthaultii and S. etubero-
sum exhibited resistance to P. erythroseptica and P. ulti-
mum. Besides, the inheritance of dry rot resistance was 
investigated by Sobkowiak et  al. (2022) in two diploid 
potato hybrid populations, leading to the identification 
of multiple QTLs on chromosomes II, VII, IX, and XII, 
including the first mapping of loci affecting tuber dry 
rot resistance in the potato genome. However, the dry 
rot resistance genes might derived from the wild-type 
potato S. chacoense, S. microdontum, and S. gourlayi as 
they were shown extreme resistance to dry rot (Sobkow-
iak et  al. 2022). Moreover, consistent QTLs for soft rot 
resistance from wild potato S. microdontum were spotted 
in chromosomes I, III, and V, responsible for resistance 
to Dickeya dianthicola (Fenstemaker et al. 2023). Hence-
forth, increasing more extensive research activities on 
those diseases will help in understanding the molecular 
underpinnings of resistance mechanisms against these 
diverse pathogens which is pivotal for the development 
of improved potato cultivars with enhanced storage 
durability.

Molecular markers associated with abiotic stress 
tolerance genes in potato
Drought tolerance genes and linked markers
A deficit in the water supply may adversely affect vari-
ous developmental stages of potatoes, especially lim-
iting their growth, reproduction, tuber quality, tuber 
size, and yield (Anithakumari et  al. 2011). Numerous 
genes involved in carbohydrate metabolism, cellular 
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communication, protein synthesis, ATP metabolism, 
and cell signaling are upregulated or downregulated 
when exposed to water stress (Ambrosone et al. 2011). 
The expressions of such genes have been evaluated 
within potato tissues under drought conditions and 
adequate water conditions (Obidiegwu et  al. 1999). 
Using SNP markers revealed 23 QTLs related to 
drought tolerance phenotypes (Anithakumari et  al. 
2011). Moreover, five specific genes, ACS3, ALDH, 
ETRTF3, PARG, and PP2C, encoding 1-aminocyclo-
propane-1-carboxylate synthase 3, aldehyde dehy-
drogenase, ethylene-responsive transcription factor, 
poly (ADP-ribose) glycohydrolase, and protein phos-
phatase 2C, respectively, have been reported being 
present in drought-sensitive cultivars. These ACS3, 
ALDH, ETRTF3, PARG , and PP2C genes were dis-
covered on potato chromosomes I, II, IV, X, and XII 
using SSR markers HRO_ACS3_1, HRO_ALDH_H, 
HRO_ETRTF_5a_D, HRO_PARGH_1A_B, and HRO_
PP2C_1_B, respectively (Table 3) (Ghislain et al. 2009; 
Schumacher et al. 2021). Furthermore, the positions of 
these genes associated with drought resistance are not 
fixed to one specific allele rather the locations vary in 
alleles among different potato varieties, making them 
ideal candidates for MAS as well as genetic diversity 
analysis (Malosetti et al. 2007). Moreover, the presence 
of an extra allele in drought-sensitive cultivars sug-
gests that the selection of cultivars against these alleles 
will facilitate the selection of drought-tolerant varie-
ties (Schumacher et al. 2021).

Cold tolerance genes and linked markers
The potato is a highland crop that grows in cold regions, 
yet frost damage in cold climates is also a significant 
issue in potato production. Cold stress stunts potato 
growth and development, resulting in lower yields (Tu 
et  al. 2021). Even though there are some wild potato 
species with cold tolerance characteristics yet a com-
mercial cultivar with such characteristics is yet to be 
found. In terms of cold tolerance, S. commersonii (2×/3×) 
showed supreme tolerance against cold and was potent to 
resist frost and achieved tuber hardening in a tempera-
ture range from 2 to 12°C. Furthermore, S. acaule (4×) 
showed remarkable resistance to cold stress whereas 
S. tuberosum (4×), S. verrucosum (2×/3×/4×), and S. 
stoloniferum (4×) showed the most sensitivity to cold 
stress (Kikuchi et  al. 2015; Ramakrishnan et  al. 2015). 
Besides, it was reported that S. tuberosum hybrids had 
been made with S. brevidens and S. commersonii (2×/3×) 
to get a cold stress-resistant breed (Orczyk et  al. 2003). 
Tu et  al. (2021) conducted a study on the hybridization 
of S. malmeanum (2×/3×), a wild species known for 
its strong freezing tolerance, with the freeze-sensitive 
commercial cultivar S. tuberosum, with the goal of cre-
ating improved varieties that are more tolerant to freez-
ing. And after hybridization via protoplast fusion, the 
somatic hybrids were screened with eight SSR primers, 
S215, ssr_165426, ssr_165497, ssr_165552, ssr_165648, 
ssr_165659, S165, and ssr_166097. On the other hand, 
some heat shock transcription factors (HSTF), StHsf004, 
StHsf007, StHsf009, StHsf014, StHsf018, StHsf019, and 
StHsf022 genes were found with potentiality against cold 

Table 3 Correlation of SSR markers with drought and cold tolerance in potato

S/N Marker type Marker name Gene name* Tolerance References

1 SSR HRO_ACS3_1 ACS3 Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)

2 SSR HRO_ALDH_H ALDH Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)

3 SSR HRO_ETRTF_5a_D ETRTF3 Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)

4 SSR HRO_PARGH_1A_B PARG Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)

5 SSR HRO_PP2C_1_B PP2C Drought Ghislain et al. (2009), Malosetti et al. (2007), Schumacher et al. (2021)

- - Hsp90-2 Drought Ambrosone et al. (2011)

- - rgga Drought Ambrosone et al. (2011)

- - susy Drought Schafleitner et al. (2007)

6 SSR S215 - Cold Tu et al. (2021)

7 SSR S165 - Cold Tu et al. (2021)

8 SSR STHSF004_F_R StHsf004 Cold Tang et al. (2016)

9 SSR STHSF007_F_R StHsf007 Cold Tang et al. (2016)

10 SSR STHSF009_F_R StHsf009 Cold Tang et al. (2016)

11 SSR STHSF014_F_R StHsf014 Cold Tang et al. (2016)

12 SSR STHSF018_F_R StHsf018 Cold Tang et al. (2016)

13 SSR STHSF019_F_R StHsf019 Cold Tang et al. (2016)

14 SSR STHSF022_F_R StHsf022 Cold Tang et al. (2016)
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stress (Table 3 and Fig. 2). Previously, the roles of HSTFs 
were confirmed for cold stress via RT-qPCR using spe-
cific markers named by their corresponding gene names 
(Tang et al. 2016).

High throughput genotyping technologies 
for potato disease resistance genes detection
Further research on technological advancements, and 
high throughput technologies are being practiced for 
unlocking the full potential of molecular markers in 
developing improved disease-resistant potato (Fig.  3). 
High throughput genotyping technologies such as geno-
typing by sequencing (GBS) was applied to discover 
dense markers for detecting disease resistance and other 
important traits in potato and a significant number of 
SNP markers were identified and filtered to create a 
high-quality subset (Caruana et  al. 2019). In addition, 
high throughput melting (HRM) assay was employed to 
detect H1-linked resistance to potato cyst nematode. The 
HRM assay utilized the markers TG689 and 57R-1P for 
this purpose (Meiyalaghan et al. 2018). In another study 
by Nie et al. (2018), the markers 5Rx1 and 106Rx2 were 
utilized in HRM to identify the PVX resistance genes 
Rx1 and Rx2, respectively. Nie et al. (2016) employed the 
YES3-3A marker in an HRM assay to precisely locate 
the PVY resistance gene Rysto in potato (Table 4). How-
ever, another high throughput genotyping technology, 
namely kompetitive allele-specific PCR (KASP), is a rap-
idly emerging high throughput genotyping technology, 
particularly popular for single nucleotide polymorphism 
(SNP) based analyses. It is a homogeneous and fluores-
cence-based genotyping variant of the PCR method. In 
the realm of potato genotyping, numerous studies have 
already reported the successful application of KASP. For 
instance, Sood et al. (2022), Kante et al. (2021), and Caru-
ana et al. (2021) have utilized KASP to confirm the pres-
ence of resistance genes Ryadg and Rysto against potato 
virus Y, employing the marker M6 and YES3-3A, respec-
tively (Table 4). Additionally, KASP has proven valuable 
in identifying various late blight resistance genes, includ-
ing Rpi-cap1 (Ram et  al. 2018), R2 (Meade et  al. 2020), 
Rpi-blb3 (Karki et al. 2021), R8 (Sood et al. 2022), and RB/
Rpi-blb1 (Sorensen et al. 2023), across different late blight-
resistant genotypes. Furthermore, KASP technology has 
been effectively employed to detect potato cyst nematode 
resistance genes H1, using the marker 57R (Meade et al. 
2020) and H2, through the markers CPRISNP 01–11 
(Sood et al. 2022). Indeed, the SNP array is another pow-
erful SNP-based genotyping technology that has been 
effectively utilized in potato genotyping, particularly 
in the detection of resistance genotypes. Prodhomme 
et al. (2020) employed the SNP array to identify specific 
markers, namely hs-SNP, STM1002-24, and St1004-96, 

associated with the potato wart disease resistance genes 
Sen1 (Prodhomme et  al. 2020), Rse-Ivb, and Rse-VIa 
(Obidiegwu et al. 2015), respectively. Moreover, the SNP 
array has also been instrumental in detecting the marker 
MG-64-17, which is associated with the PVY resistance 
gene Rychc (Table 4), as demonstrated by Li et al. (2022). 
Nonetheless, genome-wide association studies (GWAS) 
have been conducted to identify the genomic regions 
associated with resistance in potato such as GWAS was 
employed to locate genetic markers linked to resistance 
against late blight (Prakash et al. 2020; Wang et al. 2020) 
and potato common scab (Yuan et al. 2020).

On the other hand, the current understanding of geno-
typing technologies for detecting abiotic stress tolerance 
genes in potato is relatively limited. However, Anithaku-
mari et al. (2011) made significant strides in this field by 
identifying several SNP-based markers associated with 
drought stress in potatoes. Notably, they observed that 
the gene markers PotSNPs (PotSNP838, PotSNP67) were 
co-located with the root-to-shoot ratio QTL, suggesting 
a potential link between these markers and improved 
drought tolerance in potatoes. Since plants with an 
increased root-to-shoot ratio are reliable indicators of 
drought adaptation. Besides, researchers demonstrated 
proactive efforts in a separate study by transferring the 
AtDREB1A gene from Arabidopsis thaliana to tetraploid 
potatoes. This gene was found to function as a transcrip-
tional factor, imparting enhanced protection against 
various abiotic stresses, particularly drought and salt 
(Watanabe et  al. 2011). These findings underscore the 
potential of genetic engineering to enhance abiotic stress 
tolerance in potato crops. Moving forward, addressing 
the challenges in this area will necessitate a more com-
prehensive exploration of potato genetic resources with 
altered functions related to abiotic stress tolerance, par-
ticularly those sourced from wild potato species. Fun-
damental research efforts should focus on elucidating 
the molecular mechanisms and physiological functions 
of these tolerances, which will inform the development 
of effective germplasm enhancement strategies using 
genetic resources. Moreover, parallel efforts should 
be directed towards harnessing exotic genes to aug-
ment the potato’s capacity to withstand extreme abiotic 
stresses. Such scientific endeavors hold great promise 
for the advancement of resilient potato varieties, bet-
ter equipped to thrive under challenging environmental 
conditions.

Summary and conclusions
Even in tetraploid plants such as potatoes, molecular 
markers help to transport valuable genes and allow for 
the selection of superior genotypes. Potato disease resist-
ance molecular markers have revolutionized the field of 
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Fig. 3 A schematic for high-throughput genotyping in potato breeding using conventional primers connected to genes for disease resistance
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agriculture by offering advanced tools for breeding and 
potato improvement programs. However, resistance 
genes for late blight (R1, R2, R3a, R3b, and Rpi-genes), 
PVY (Ryadg, Rysto, and Rychc), PLRV (PLRV1), PVX (Rx1 
and Rx2), PVS (Ns), and PCN (H1, H2, Gpa2, Gor1-4, and 
Gpr1) are available in potato and these R genes linked 
molecular markers are widely used in potato breeding for 
the genetic gain against those destructive diseases (Asano 
et  al. 2012; Yermishin et  al. 2016; Kneib et  al. 2017; 
Bhardwaj et al. 2019; Klimenko et al. 2019; Chekushkina 
et al. 2020; Slater et al. 2020).

The benefits of molecular markers for enhancing 
potato disease resistance are multifaceted. They offer 
remarkable speed and precision in the breeding process, 
allowing for the early identification of disease-resistant 
plants. For instance, Sharma et  al. (2014) successfully 
employed molecular markers to identify elite germplasm 
with resistance to late blight (R1, R2, and R3a), potato 
virus Y (Ryadg and Rysto), and potato cyst nematode (H1 
and Gro1-4). Besides, marker-assisted selection (MAS) 
facilitates the introduction of resistance genes into elite 
cultivars without compromising desirable traits, while 

simultaneously decreasing breeding costs and time 
requirements, as reported by Bhardwaj et  al. (2019) for 
resistance to potato viruses (PVY, PVS, PVX, and PLRV). 
Moreover, molecular markers enable the pyramiding of 
multiple resistance genes, as demonstrated by Mori et al. 
(2011) in their development of a multiplex PCR to spot 
resistance genes for late blight, PVX, PVY, and PCN. 
Similarly, another multiplex PCR protocol was developed 
by Rogozina et  al. (2019) to identify potato genotypes 
for breeding R genes resistance to PVY (Rysto, Rychc), 
PVX (Rx), PCN (H1 and Gro1-4), and potato wart (Sen1) 
disease. This broadens genetic diversity and bolsters 
resistance against various diseases. They also aid in the 
conservation of genetic diversity by preserving rare and 
unique disease-resistant genes in wild relatives, ensuring 
the long-term sustainability of potato production in the 
face of evolving disease pressures.

However, potato breeding for disease resistance using 
molecular markers faces significant challenges in prac-
tical implementation. The diverse and complex nature 
of potato diseases, combined with the indirect link 
between molecular markers and resistance genes, leads 

Table 4 High-throughput genotyping technologies for the detection of potato disease resistance genes

HRM high resolution melting, KASP kompetitive allele specific PCR (KASP), SNP single nucleotide polymorphism, GWS genome wide sequence, PVY potato virus Y, PVX 
potato virus X, LB late blight, PCN potato cyst nematode

Sl no Genotyping 
technology

Gene Marker Resistance/ 
Tolerance

References

1 HRM Rx1 5Rx1 PVX Nie et al. (2018)

Rx2 106Rx2

Rysto YES3-3A PVY Nie et al. (2016)

H1 TG689 PCN Meiyalaghan et al. (2018)

57R-1P

2 KASP Ryadg M6 PVY Caruana et al. (2021), Kante 
et al. (2021), Sood et al. 
(2022)

M45 Caruana et al. (2021)

RYSC3 Caruana et al. (2021)

Rysto YES3-3A Sood et al. (2022)

H1 57R PCN Meade et al. (2020)

H2 CPRISNP 01–11 Sood et al. (2022)

R2 R2 LB Meade et al. (2020)

Rpi-blb1 RB Sorensen et al. (2023)

R8 - Sood et al. (2022)

Rpi-cap1 - Ram et al. (2018)

3 SNP array Rychc M50 PVY Li et al. (2022)

Sen1
Sen1-4/Rse-IVb
Rse-VIa

Hs-SNP
STM1002-24
St1004-96

Wart Prodhomme et al. (2020)

Obidiegwu et al. (2015)

SFwrec PotSNP838 Drought Anithakumari et al. (2011)

phtrec PotSNP67

fmassRec PotSNP838

4 GWS R2 R2 LB Prakash et al. (2020)
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to potential false results. Moreover, the tetraploid nature 
of potatoes makes it difficult to identify and track genes, 
which further affects the accuracy of marker-based 
breeding. Addressing the challenges, several advanced 
genotyping technologies have already been established 
such as genotyping by sequencing (GBS), high-resolution 
melting (HRM), kompetitive allele-specific PCR (KASP), 
SNP array, genome-wide association studies (GWAS), 
and so on. Those technologies offer several advantages 
for potato breeding in terms of disease resistance. They 
are (a) highly precise, reducing errors, and enhancing the 
accuracy of genetic variation detection; (b) more sensi-
tive in identifying disease-associated genetic variations; 
(c) possess superior resolution, enabling the detection of 
subtle genetic variations linked to resistance genes; (d) 
high-throughput, allowing for the simultaneous identifi-
cation of multiple resistance genes; (e) capable of detect-
ing numerous single nucleotide polymorphisms (SNPs) 
across the genome, facilitating a comprehensive analysis 
of genetic diversity and the discovery of new resistance 
genes; (f ) cost-effective and efficient, facilitating the 
selection of disease-resistant potato varieties. Moreo-
ver, the unlabeled probe HRM assay has the capability 
to detect allele dosage, which can be considered an addi-
tional advantage of advanced genotyping technologies 
(Meiyalaghan et al. 2019).

Finally, it might be concluded that based on the molec-
ular markers’ researchers can perform high-throughput 
technology like SNP-depended technologies, KASP, 
HRM, target SNP-seq as well as develop new technolo-
gies to identify more efficient and specific resistance gene 
locus for genotyping the potato breeding population 
against different biotic and abiotic stresses.
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