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METHODOLOGY

Analysis and simulation of plant disease 
progress curves in R: introducing the epifitter 
package
Kaique S. Alves*   and Emerson M. Del Ponte 

Abstract 

The analysis of the disease progress curves (DPCs) is central to understanding plant disease epidemiology. The shape 
of DPCs can vary significantly and epidemics can be better understood and compared with an appropriate depiction 
and analysis. This paper introduces epifitter, an open-source tool developed in R for aiding in the simulation and analy-
sis of DPC data. User-level functions were developed and their use is demonstrated to the reader using actual disease 
progress curve data for facilitating the conduction of several tasks, including (a) simulation of synthetic DPCs using 
four population dynamics models (exponential, monomolecular, logistic, and Gompertz); (b) calculation of the areas 
under disease progress curve and stairs; (c) fitting and ranking the four above-mentioned models to single or multiple 
DPCs; and (d) generation and customization of graphs. The package requires the installation of R in any desktop com-
puter and the scripted analysis can be fully documented, reproduced, and shared. The epifitter R package provides a 
flexible suite for temporal analysis of epidemics that is useful for both research and teaching purposes.
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Background
Plant disease epidemics can be defined as "the change 
in disease intensity in a population of susceptible host 
plants over time and space" (Madden et al. 2007). As long 
as conditions are favorable for a pathogen population to 
infect, colonize, and reproduce in its host population, 
an epidemic may occur and spread and, occasionally, 
occupy large geographic areas in a short time. Although 
the latter case is rare, epidemics are undergoing as long 
as these two populations of individuals meet together 
and encounter a favorable environment, regardless of the 
magnitude of the disease intensity (Madden et al. 2007).

The reasons for studying plant disease epidemics are 
multifold and can be practical or more fundamental. 
A lot can be learned from the study of the "progress" of 

epidemics, typically represented by a disease progress 
curve (DPC), which is a "graph" or "signature" of an epi-
demic, within which the spatial dimension is implicit 
(Kranz and Rotem 1988; Campbell and Madden 1990; 
Kranz 2003). A DPC, which can be obtained as long as 
the amount of disease (y) in a plant population is assessed 
sequentially in time (t), integrates the effects of the three 
main elements of the disease triangle occurring during 
the epidemic.

The analysis of DPC data can provide useful informa-
tion for gaining understanding of underlying epidemic 
processes. Indeed, the shapes of the DPCs may vary 
widely and the characteristics of the epidemics can be 
discerned by their appropriate depiction and analysis 
(Van der plank 1963; Kranz 2003). Usually, one is inter-
ested in describing and comparing epidemics that result 
from different treatments or natural environmental 
variation, which can be accomplished through temporal 
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analysis of epidemics; or the analysis of a collection of 
DPCs (Campbell and Madden 1990).

Temporal analysis has many facets of varying com-
plexity. The simplest case is the appraisal of the disease 
intensity at any time during the epidemic, and such 
"single-point" assessment can be sufficient for certain 
diseases. A case of intermediate complexity is the cal-
culation of the area under the disease progress curve 
(AUDPC), proposed by Van der Plank (1963); a value 
that summarizes the "total measure of disease stress", 
or its mathematical modification called AUDPS (the 
area under the disease progress stairs) that corrects the 
underestimation of the effects of the first and last evalu-
ation by AUDPC (Simko and Piepho 2012). At a higher 
level of complexity, mathematical models can be fitted to 
the data to express epidemic progress in terms of rates 
and absolute/relative quantities. This can be accom-
plished using population dynamics (or growth) models 
in which the estimated parameters are usually biologi-
cally meaningful (Van der Plank 1963; Leonard and Fry 
1986; Campbell and Madden 1990; Madden et al. 2007). 
The classical models are the non-flexible ones such as 
exponential, monomolecular, logistic, and Gompertz, 
which are appropriate for epidemics that do not present a 
degressive phase (decrease in disease intensity).

The mathematics behind the fit of these population 
dynamics models is straightforward and several tutori-
als with accompanying computer code or standalone 
software have been prepared to facilitate usage for edu-
cation or research purposes. A general-purpose statisti-
cal environment like SAS or R can be used to perform 
model fitting to DPC data using either linear or nonlin-
ear regression modeling. Tutorials with an example script 
using SAS were provided by Neher et  al. (1997) in the 
first edition of Exercises in Plant Disease Epidemiology 
and later by Jesus Junior et al. (2004) and Madden et al. 
2007 in the chapters on temporal analysis of epidem-
ics in Epidemiologia aplicada ao manejo de doenças de 
plantas (Vale et al. 2004) and Study of Plant Disease Epi-
demics (Madden et al. 2007), respectively. A tutorial with 
examples of R codes for calculating AUDPCs, performing 
comparisons, and fitting models using regression analysis 
has been published by the APS Education center (Sparks 
et al. 2008).

An early custom-made software, programmed to run 
on a PC (DOS-based), called Epimodel has been dem-
onstrated in the first edition of Exercises in Plant Dis-
ease Epidemiology (Nutter and Parker 1997). An updated 
version of Epimodel, programmed in Java and capable 
of running on any computer system, was presented by 
Nutter et al. (2015) in the second edition of Exercises in 
Plant Disease Epidemiology. Finally, in this same second 
edition, the use of a Microsoft Excel 2007 spreadsheet 

was illustrated in detail in a tutorial presented by Bowen 
(2015).

The main objective of this paper is to introduce and 
illustrate the functionalities and capabilities of the epifit-
ter R package in performing a range of temporal analyses 
of DPCs including visualization, model fitting and simu-
lation. As a real example, we used published data on the 
temporal progress of powdery mildew (Leveillula tau-
rica) severity in organic tomato (Solanum lycopersicum) 
evaluated under different irrigation systems and levels of 
soil moistures as management tactics (Lage et al. 2019).

Results
The epifitter package allows working with actual or syn-
thetic (simulated) DPCs for single epidemics or replicated 
experimental data. The latter case is an implementation 
based on the classic population dynamic models to pro-
duce synthetic data with or without uncertainty (random 
error). Once the data are loaded, other functions allow 
for: (1) fitting and ranking for the models based on sum-
mary stats; (2) comparing model parameters; (3) calcu-
lating the area under the disease progress curve; and (4) 
plotting diagnostic and publication-ready plots via cus-
tomization of ggplot2 objects (Table 1). Figure 1 summa-
rizes a possible workflow and steps from data import to 
visualization using epifitter functions.

Package availability
The package is available for download on CRAN (The 
Comprehensive R Archive Network) and can be installed 
using install.packages(“epifitter”) com-
mand. The development version is maintained on GitHub 
where further installation instructions can be found 
(github.com/AlvesKS/epifitter).

Example for actual epidemics dataset
To demonstrate the capability of epifitter, we worked 
with a subset of data from a three-year study on the tem-
poral progress of powdery mildew (Leveillula taurica) 
in organic tomato (Solanum lycopersicum). The objec-
tive of that work was to compare powdery mildew epi-
demics under the effect of irrigation systems combined 
with levels of moisture (Lage et al. 2019). We selected the 
last year of evaluation (2011) and five irrigation systems 
under different levels of moisture (high or moderate). 
The full combinations of irrigation system and moisture 
resulted in eight treatments. Disease severity was evalu-
ated during 73 days following a seven-day interval. This 
subset of dataset is included in the package and can be 
loaded by running data(“PowderyMildew”) in 
R (make sure epifitter has been properly installed and 
loaded before running it). 
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Note that we also loaded the tidyverse package, a coher-
ent system of packages for data manipulation, exploration 
and visualization that share a common design philosophy 
(Wickham et  al. 2019). We demonstrate the use of epi-
fitter here under such philosophy. By filtering a subset of 
the original PowderyMildew data frame we produced a 
single curve data frame called single_curve 

We then visualized the curve (Fig. 2) with the following 
code: 

Model fitting
Single DPC
Three functions can be used to fit the classic epidemio-
logical models to DPC data. The first, fit_lin() fits the 
models to the data via linearization, meaning that disease 
intensity data is transformed according to the model in 
advance to the fitting procedure, using ordinary linear 
regression. The linear regression is one of the most com-
monly used approaches because of its ease of implemen-
tation and interpretation (Madden et al. 2007). Although 
it is quite straightforward to run using native R functions 
[e.g. lm()], the process might be complicated for those 
with little or no experience in programming. Here is how 
to use the function and the respective output: 

Table 1  User-level functions available in epifitter, a R package that provides a suite for fitting models and simulating disease progress 
curves (DPCs) and calculating areas under disease progress curves and stairs

Function Description

fit_lin() Fits models to single DPC data via linearization

fit_nlin() Fits models to single DPC via nonlinear regression

fit_nlin2() An extension of fit_nlin() that allows estimating the maximum 
asymptote K parameter

fit_multi() Fits models to multiple DPCs using either linear and nonlinear regression

plot_fit() Generates ggplot2 visualization of output of a model fitting object via 
fit_lin(), fit_nlin(), and fit_nlin2()

sim_exponential() Simulates DPC using the exponential model

sim_monomolecular() Simulates DPC using the monomolecular model

sim_logistic() Simulate DPC using the logistic model

sim_gompertz() Simulate DPC using the Gompertz model

AUDPC() Calculates the area under the disease progress curves

AUDPS() Calculates the area under the disease progress stairs

PowderyMildew Dataset containing experimental data of disease progress curves of pow-
dery mildew under different irrigation systems and soil moisture levels in 
organic tomato (Lage et al. 2019)
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The second function available is fit_nlin(). It also 
estimates y0 and r , but instead of using data lineari-
zation, it uses nonlinear regression against the actual 
(non-transformed) disease intensity values. fit_nlin() 
is a wrapper for nlsLM()function of the minpack.lm 
package (Elzhov et al. 2016), which implements the Lev-
enberg–Marquardt nonlinear least-squares algorithm 
(Moré 1978). 

Furthermore, to account for situations when maxi-
mum disease intensity does not reach y = 1 (100%), 

Fig. 1  The workflow and main functions of the epifitter, an R package for temporal analysis of plant disease epidemics

Fig. 2  Disease progress curve of powdery mildew (Leveillula taurica) 
on organic tomato under drip irrigation and high moisture. Data are 
from a single plot (block 1). (Lage et al. 2019)
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the parameter K  was introduced into the models 
(Campbell and Madden 1990; Gilligan 1990; Kranz 
2003; Madden et  al. 2007). Therefore, the function 
fit_nlin2() fits a modification of the two-param-
eter models to account for this additional parameter 
as the maximum asymptote. Note that the exponen-
tial model is not fitted to the data using this function, 
because this model lacks K  . 

Multiple DPCs
The functions for model fitting described above are 
suitable for fitting models to single epidemics (one 
curve only). The fit_multi() was designed sub-
sequently to fit the models to multiple epidemics in 
the same dataset. It is the most flexible function of 
the package, allowing users to choose between linear 
and nonlinear regression and whether or not it should 
estimate K  . The user should indicate the data frame 
name that contains all the data in the data argument. 
The column names containing the time and disease 
intensity should be indicated in the arguments time_
col and intensity_col, respectively. Other argu-
ments include:

strata_col in which the user should indicate 
the data frame’s column that stratifies the DPCs.
nlin: Logical arguments that indicate whether 
nonlinear regression should be used. If set as 
TRUE, the user can set starting values for param-
eters in the starting_par argument, as well as 
the maximum number of iterations.
Estimate_K: A logical argument that indicates 
whether the maximum asymptote should be esti-
mated.

Caution should be taken when fitting several curves 
with different topologies and intensities using the 
fit_multi() function with nonlinear regression 
(nlin=TRUE). This function requires parameters’ 
starting values for running the implemented algo-
rithm, and different curve topologies may require dif-
ferent sets of starting values for the parameters, which 
could cause failure in achieving convergence to esti-
mate the model parameters. This problem should not 
arise when using fit_multi() with model lineariza-
tion (nlin=FALSE). 

This code generates an object (in this case, fit pd) of 
the list type. The list contains two data frames: Parame-
ters and Data. The Parameters data frame contains 
the estimated parameters for each respective model in 
each level of the strata informed in the  function. It also 
displays the goodness of fit of each model to each respec-
tive DPC (the available goodness of fit parameters is 
presented in the section ‘model summary and goodness 
of fit’). We can visualize the Parameters data frame 
using fit_pd$Parameters. Another data frame avail-
able in the generated object is called Data, which con-
tains the original data used for model fitting as well as the 
predicted values of disease intensity and residual values 
(actual minus predicted values) for each model and DPC. 
We can access the Data data frame using fit_pd$Data.

Model summary and goodness of fit
Three statistics were calculated for all model fitting func-
tions to inform on the model goodness-of-fit, including 
the coefficient of determination (r2), the residual stand-
ard error (RSE), and Lin’s concordance correlation coef-
ficient (CCC) (Lin 1989). To facilitate interpretation and 
model selection by users, the models were sorted by the 
value of CCC from highest to lowest in the summary out-
put (Fig. 3). The model summary includes the estimated 
values (Estimate), standard errors (Std.error), 
lower (Lower) and upper (Upper) confidence intervals 
(95%) for the model parameters (infection rate, initial 
inoculum, and maximum asymptote, in the case of the 
fit_nlin2() function). The summary on fit_lin() 
displays the estimated values of y0 (Estimate), its lin-
earized form y0* (Linearized), and the standard error 
of the estimate of y0* (lin.SE).

Model fit visualization
epifitter allows producing plots for the fitted models 
using the ggplot2 package (Wickham 2016). The plot_
fit() function produces a panel with the models’ curves 
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Fig. 3  Output of the fit_lin() applied to the DPC from the single_curve data frame

Fig. 4  Panel plot output of the plot_fit() function obtained from the output of model fitting using the function fit_nlin(). The panel 
presents the simulated data (dots) and the fitted models in solid lines: Gompertz, Logistic and Monomolecular
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(as lines) and the DPC data (as points) (Fig. 4). Currently, 
there are options for plotting only a specific curve model 
and adjusting line and point sizes. Furthermore, since 
the function was built using ggplot2 grammar, the user 
can customize the graph by modifying color pallets, axis 
labels, faceting arrangement, and other customization 
functions provided in ggplot2.

To use the function, users first need to fit the models 
using fit_lin(), fit_nlin(), or fit_nlin2(), and 
have the object of one of these functions put into the 
plot_fit(), as shown below: 

Fig. 5  Gompertz model fitted curves (lines) to disease progress data (dots) of powdery mildew (Leveillula taurica) in organic tomato for different 
irrigation systems under two levels of soil moisture (Lage et al. 2019)

Model fit visualization can also be performed from the 
fit_multi() output using the Data data frame. How-
ever, the user should use the functions provided in the 
ggplot2 package to generate the graph. Here, we generate 

a publication-ready figure containing the Gompertz 
model curves for each treatment and the actual DPC data 
in the same plot (Fig. 5).
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Fig. 6  Simulated data (diamond dots) using the function sim_gompertz() and Gompertz fitted curves obtained from model fitting with the 
fit_multi() function. Codes for reproducing this figure are available at git.io/JnTSU

Simulation
Four functions produce simulated DPCs that typi-
cally represent monocyclic or polycyclic epidemics (e.g. 

sim_logistic, Table  1). The arguments for running 
any of these functions are: 
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Table 2  Comparative table for the functionalities available 
in the epifitter, EPIDMODEL (Nutter and Parker 1997), and the 
spreadsheet developed by Bowen (2015)

Functionalities Epimodel Spreadsheet Epifitter

Datasets

Accompanying datasets Yes No No

Handling of single epidemics Yes No Yes

Handling of multiple epidemics Yes No Yes

Models fitting

Linear Yes No No

Exponential Yes No Yes

Monomolecular Yes No Yes

Logistic Yes No Yes

Gompertz Yes No Yes

Richards No No No

Estimate maximum asymptote No No Yes

Simulation

Disease progress curves No Yes Yes

Random noise No No Yes

Fitting method

Linear regression Yes No Yes

Non-linear regression No No Yes

Model summary

Goodness of fit Yes No Yes

Model ranking No No Yes

Visualization

Diagnostic (error plots) Yes No No

Fitted values Yes No Yes

Plot customization No Yes Yes

Epidemic comparison

Area under curve or stairs No No Yes

The alpha argument assumes normality with mean y 
and standard deviation σ at each time point. A correction 
was introduced for the standard deviation to be a func-
tion of disease intensity assuming that variance decreases 
as y approaches the asymptotes 0 and 1, which is given by

in which yi is the mean disease intensity at each time 
point i ( i = 1, 2, . . . ,N  ). Alternative probability distribu-
tions can be used and, therefore, the output also returns 
mean disease intensity values without the replicates.

The following example generates simulated data using 
the estimated parameters of the Gompertz model for the 
DPC from the single_curve data frame. We used 4 
replicates, with the same time length (63 days) and inter-
val (7 days), and alpha = 0.1. 

To illustrate the epifitter apparatus designed for simu-
lating DPC using population growth models, we gath-
ered the model parameters estimated from the actual 
data to simulate DPCs using the specific function for the 
Gompertz model: sim_gompertz(). We simulated 
curves for all treatments considering 4 replicates at each 
time point. To add variability to the simulated data, we 

(1)σi = yi ∗ alpha ∗
(

1− yi
)

,
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used alpha = 0.1 (value arbitrarily chosen based 
on the visualization of the actual data variability). Simu-
lated data are depicted in Fig. 6, in which diamond dots 
represent the simulated values and the lines represent 
the model curve fitted to the actual data. See the ‘Open 
source and reproducibility’ subsection in the Methods 
section for the link to access the code to reproduce the 
simulations and figure plotting.

Area under disease progress curves and stairs
Two functions, AUDPC() and AUDPS(), are available 
to calculate the areas under the disease progress curve 
(AUDPC) and area under the disease progress stairs 
(AUDPS), respectively. The areas for the single curve 
dataset can be obtained as follows: 

The functions should work using these two arguments, 
however, if the disease intensity is given in percentage, 
the user needs to set the argument y_proportion 
=FALSE. To calculate the areas in relative terms, the 
user should set type = relative.

Usually there are more than one curve to obtain the 
areas under the curve/stairs, which can be done using 
two handy functions of the tidyverse: group_by() and 
summarise(). For the full dataset, this can be obtained 
as follows: 

These lines of code should generate a data frame con-
taining the columns used for grouping (columns inside 
group_by()) and two additional columns: audpc 
and audps, which were created in the summarise() 
function.

Discussion
Prior to epifitter, model fitting tutorials for scripting lan-
guages have been made available for R and SAS, but not 
organized as a package with convenient user-level func-
tions. To our knowledge, epifitter is the second suite of 
functions organized as an R package for the analysis of 
plant disease epidemics, but the first to focus on tempo-
ral analysis. epiphy is an R package specialized in spatial 
analysis of plant disease epidemics and full documenta-
tion can be found in the package’s vignettes (Gigot 2018).

We further compared epifitter with two fully functional 
applications that have been made available for facilitat-
ing the fitting or simulating population growth models to 
DPC data. The first is the EPIMODEL, early developed 
during the mid-1990s and re-programmed in Java lan-
guage twenty years later to run in the current stationary 
platforms. EPIMODEL fits five models (the linear model 
that is not available in epifitter) but does not offer the 
option to estimate the curve’s maximum asymptote. The 
authors of EPIMODEL do not make clear which method 
should be used for model fitting (presumably linear mod-
eling), and unlike epifitter, the software does not rank the 
best-fitted model, besides producing an r2 statistics. The 
application produces several plots but they cannot be 
customized for publication.

Bowen (2015) made available an Excel spreadsheet 
in which one can modify the parameters and simulate 
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curves for six population growth models (Table  2). A 
missing feature is the possibility to fit the models to data, 
whereas this is central to both EPIDMODEL and epifit-
ter. On the other hand, the spreadsheet is very straight-
forward to use and has several annotations with clear 
explanations on each model. Clearly, epifitter incorpo-
rates most of the features offered by these two reviewed 
applications, and extra ones such as the calculation of 
areas under the curve, which had been made available 
as a function in another R package designed for statisti-
cal analysis of agricultural data (agricolae; de Mendiburu 
and Yaseen 2020), and in an online tutorial (Sparks et al. 
2008).

As part of the package improvement and maintenance, 
we should focus on correcting possible bugs, expanding 
existing functions, and developing new dedicated func-
tions. The users of epifitter are therefore encouraged to 
open any kind of issues (https://​github.​com/​Alves​KS/​
epifi​tter/​issues), such as requests for improvement, bug 
reports, etc.

New features that are planned for future versions of 
epifitter include: (a) functions for fitting flexible (three-
parameter) models such as the Richard and Weibull 
models (Madden et al. 2007); (b) improving the functions 
for comparing multiple epidemics from experiments con-
ducted under different experimental designs (e.g. CRD, 
CRBD); (c) functions for fitting spatial gradient models; 
and (d) inclusion of DPC datasets for aiding in teaching 
and training.

Conclusions
To our knowledge, epifitter is the first comprehensive 
toolbox that facilitates the analysis of single or multi-
ple epidemics. Analysis can be performed via choos-
ing different models and using different model fitting 
procedures. Furthermore, the package enables users to 
perform stochastic epidemic simulations for scenario 
analysis. Finally, it provides functions for preparing and 
customizing publication-ready reports and graphics.

Since epifitter was coded using the R language, an 
environment for statistical computing and graphics (R 
Core Team 2020), it has offered an open-source and free 
option for data analysis in all areas of science. The codes 
produced can be run in any machine with R installed, 
which facilitates reproducibility. The integration with 
other packages (e.g. dplyr, ggplot2) having common data 
structures and grammar (Wickham et  al., 2020) allows 
users to run analysis that could be troublesome for those 
with no or little computational background.

Methods
Model fitting
To obtain the function fit_lin(), fitting of the popu-
lation growth models using data linearization was done 
as described by Madden et al. (2007), and the linearized 
forms of these models, Eqs. 2 to 5, respectively, were fit-
ted using ordinary linear regression to the transformed 
DPC data. Transformation was done as shown in the 
equations (left side of the equation):

rE , rM , rL , and rG indicate the apparent infection rate for 
each respective model, K  represents the model maxi-
mum asymptote, t represents the time and y indicates the 
disease intensity. To develop the function fit_nlin() 
and fit_nlin2(), nonlinear regression was performed 
using the integral form of the models. The integral form 
of the monomolecular, logistic, and Gompertz models 
can be found in Madden et  al. (2007, p. 110, table  4.4). 
The nlsLM() function of the minpack.lm package 
(Elzhov et  al. 2016) was used to perform nonlinear 
regression using the Levenberg–Marquardt Algorithm.

Simulation of synthetic DPCs datasets
To simulate the DPCs, we used the differential forms of 
the exponential, monomolecular, logistic, and Gompertz 
models, given by Eqs. 6 to 9, respectively.

(2)ln
(

y
)

= ln
(

y0
)

+ rEt

(3)ln

(

1

1− y

)

= ln

(

1

1− y0

)

+ rMt

(4)ln

(

y

1− y

)

= ln

(

y0

1− y0

)

+ rLt

(5)−
[

−ln
(

y
)]

= −ln
[

−ln
(

y0
)]

+ rGt

(6)
dy

dt
= rEy

(7)
dy

dt
= rM

(

K − y
)

(8)
dy

dt
= rLy

(

K − y
)

https://github.com/AlvesKS/epifitter/issues
https://github.com/AlvesKS/epifitter/issues
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The function ode() from the deSolve package (Soe-
taert et al. 2010) was used to simulate the DPC for each 
respective model. The disease intensity in a specific time 
point t , that is yi , was assumed to be normally distrib-
uted with mean µ = yi , in which i = 1, 2, ...,N  ( N  is the 
total number of time points). The standard deviation was 
given by Eq. 1.

Area under disease progress curves and stairs
Equations 10 and 11 were used to calculate the AUDPC 
and AUDPCS, respectively (Simko and Piepho 2012).

Open‑source and reproducibility
The R codes used to assemble the functions that consti-
tute the epifitter are available on GitHub (git.io/JnTSo). 
All codes used in this manuscript were fully documented 
using R markdown from which a website was generated 
to facilitate reproducibility (git.io/JnTSU).

Abbreviations
AUDPC: Area under the disease progress curve; AUDPS: Area under the disease 
progress stairs; DPC: Disease progress curves.
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