Adhikari TB, Bai J, Meinhardt SW, Gurung S, Myrfield M, Patel J, et al. Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis. Mol Plant Microbe Interact. 2009;22(9):1056–68. https://doi.org/10.1094/MPMI-22-9-1056.
Article
CAS
PubMed
Google Scholar
Adhikari P, Oh Y, Panthee DR. Current status of early blight resistance in tomato: an update. Int J Mol Sci. 2017;18(10):2019. https://doi.org/10.3390/ijms18102019.
Article
CAS
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Batanghari JW, Deepe GS Jr, Di Cera E, Goldman WE. Histoplasma acquisition of calcium and expression of CBP1 during intracellular parasitism. Mol Microbiol. 1998;27(3):531–9. https://doi.org/10.1046/j.1365-2958.1998.00697.x.
Article
CAS
PubMed
Google Scholar
Beck MR, DeKoster GT, Hambly DM, Gross ML, Cistola DP, Goldman WE. Structural features responsible for the biological stability of Histoplasma’s virulence factor CBP. Biochemistry. 2008;47(15):4427–38. https://doi.org/10.1021/bi701495v.
Article
CAS
PubMed
Google Scholar
Borah N, Albarouki E, Schirawski J. Comparative methods for molecular determination of host-specificity factors in plant-pathogenic fungi. Int J Mol Sci. 2018;19(3):863. https://doi.org/10.3390/ijms19030863.
Article
CAS
PubMed Central
Google Scholar
Chen Y, Yu H, Li Y, Li Y. Sorting out inherent features of head-to-head gene pairs by evolutionary conservation. BMC Bioinformatics. 2010;11(Suppl 11):S16. https://doi.org/10.1186/1471-2105-11-S11-S16.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Liu C, Gui Y, Si K, Zhang D, Wang J, et al. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. New Phytol. 2018a;217(2):756–70. https://doi.org/10.1111/nph.14861.
Article
CAS
PubMed
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018b;34(17):i884–90. https://doi.org/10.1093/bioinformatics/bty560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalio RJD, Herlihy J, Oliveira TS, Mcdowell JM, Machado MAA. Effector biology in focus: a primer for computational prediction and functional characterization. Mol Plant Microbe Interact. 2018;31(1):22–33. https://doi.org/10.1094/MPMI-07-17-0174-FI.
Article
PubMed
Google Scholar
Dang HX, Pryor B, Peever T, Lawrence CB. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics. 2015;16(1):239. https://doi.org/10.1186/s12864-015-1430-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27(8):1164–5. https://doi.org/10.1093/bioinformatics/btr088.
Article
CAS
PubMed
Google Scholar
de Torres ZM, Littlejohn G, Jayaraman S, Studholme D, Bailey T, Lawson T, et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nat Plants. 2015;1(6):1507. https://doi.org/10.1038/nplants.2015.74.
Article
CAS
Google Scholar
de Vries S, Stukenbrock EH, Rose LE. Rapid evolution in plant-microbe interactions-an evolutionary genomics perspective. New Phytol. 2020;226(5):1256–62. https://doi.org/10.1111/nph.16458.
Article
PubMed
Google Scholar
Dita MA, Brommonschenkel SH, Matsuoka K, Mizubuti ESG. Histopathological study of the Alternaria solani infection process in potato cultivars with different levels of early blight resistance. J Phytopathol. 2007;155(7–8):462–9. https://doi.org/10.1111/j.1439-0434.2007.01258.x.
Article
Google Scholar
Dong S, Ma W. How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. Curr Opin Plant Biol. 2021;62: 102027. https://doi.org/10.1016/j.pbi.2021.102027.
Article
CAS
PubMed
Google Scholar
Emms D, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. https://doi.org/10.1186/s13059-019-1832-y.
Article
PubMed
PubMed Central
Google Scholar
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 2020;117(17):9451–7. https://doi.org/10.1073/pnas.1921046117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouché S, Plissonneau C, Croll D. The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr Opin Microbiol. 2018;46:34–42. https://doi.org/10.1016/j.mib.2018.01.020.
Article
CAS
PubMed
Google Scholar
Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu CH, Panstruga R. Rapid evolution in plant–microbe interactions–a molecular genomics perspective. New Phytol. 2020;225(3):1134–42. https://doi.org/10.1111/nph.15966.
Article
PubMed
Google Scholar
Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, et al. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006;38(8):953–6. https://doi.org/10.1038/ng1839.
Article
CAS
PubMed
Google Scholar
Gannibal PB, Orina AS, Mironenko NV, Levitin MM. Differentiation of the closely related species, Alternaria solani and A. tomatophila, by molecular and morphological features and aggressiveness. Eur J Plant Pathol. 2014;139(3):609–23. https://doi.org/10.1007/s10658-014-0417-6.
Article
Google Scholar
Gilmore SA, Voorhies M, Gebhart D, Sil A. Genome-wide reprogramming of transcript architecture by temperature specifies the developmental states of the human pathogen Histoplasma. PLoS Genet. 2015;11(7): e1005395. https://doi.org/10.1371/journal.pgen.1005395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gíslason MH, Nielsen H, Armenteros JJA, Johansen AR. Prediction of GPI-anchored proteins with pointer neural networks. Curr Res Biotechnol. 2021;3:6–13. https://doi.org/10.1101/838680.
Article
Google Scholar
Goswami RS. Targeted gene replacement in fungi using a split-marker approach. In: Bolton M, Thomma B, editors. Plant Fungal Pathogens. Methods in Molecular Biology, vol. 835. Humana Totowa, NJ: Humana Press; 2012. https://doi.org/10.1007/978-1-61779-501-5_16.
Chapter
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–66. https://doi.org/10.1093/nar/gkg770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using evidence modeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):1–22. https://doi.org/10.1186/gb-2008-9-1-r7.
Article
CAS
Google Scholar
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics. 2015;32(5):767–9. https://doi.org/10.1093/bioinformatics/btv661.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Suppl 2):W585–7. https://doi.org/10.1093/nar/gkm259.
Article
PubMed
PubMed Central
Google Scholar
Kamoun S, van West P, Vleeshouwers VG, de Groot KE, Govers F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell. 1998;10(9):1413–26. https://doi.org/10.1105/tpc.10.9.1413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kettles GJ, Bayon C, Sparks CA, Canning G, Kanyuka K, Rudd JJ. Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici. New Phytol. 2018;217(1):320–31. https://doi.org/10.1111/nph.14786.
Article
CAS
PubMed
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. https://doi.org/10.1006/jmbi.2000.4315.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66:513–45. https://doi.org/10.1146/annurev-arplant-043014-114623.
Article
CAS
PubMed
Google Scholar
Lopez D, Ribeiro S, Label P, Fumanal B, Venisse JS, Kohler A, et al. Genome-wide analysis of Corynespora cassiicola leaf fall disease putative effectors. Front Microbiol. 2018;9:276. https://doi.org/10.3389/fmicb.2018.00276.
Article
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464(7287):367–73. https://doi.org/10.1038/nature08850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54. https://doi.org/10.1093/molbev/msab199.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald MC, Taranto AP, Hill E, Schwessinger B, Liu Z, Simpfendorfer S, et al. Transposon-mediated horizontal transfer of the host-specific virulence protein toxa between three fungal wheat pathogens. mBio. 2019;10(5):e01515-19. https://doi.org/10.1128/mBio.01515-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meena M, Gupta SK, Swapnil P, Zehra A, Dubey MK, Upadhyay RS. Alternaria toxins: potential virulence factors and genes related to pathogenesis. Front Microbiol. 2017;8:1451. https://doi.org/10.3389/fmicb.2017.01451.
Article
PubMed
PubMed Central
Google Scholar
Ozkilinc H, Rotondo F, Pryor BM, Peever TL. Contrasting species boundaries between sections Alternaria and Porri of the genus Alternaria. Plant Pathol. 2017;67(2):303–14. https://doi.org/10.1111/ppa.12749.
Article
CAS
Google Scholar
Rajarammohan S, Paritosh K, Pental D, Kaur J. Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae-a pathogen of the Brassicaceae family. BMC Genomics. 2019;20(1):1036. https://doi.org/10.1186/s12864-019-6414-6.
Article
PubMed
PubMed Central
Google Scholar
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens. Trends Plant Sci. 2021;26(2):111–23. https://doi.org/10.1016/j.tplants.2020.09.006.
Article
CAS
PubMed
Google Scholar
Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, et al. The genome biology of effector gene evolution in filamentous plant pathogens. Annu Rev Phytopathol. 2018;56:21–40. https://doi.org/10.1146/annurev-phyto-080516-035303.
Article
CAS
PubMed
Google Scholar
Sebghati TS, Engle JT, Goldman WE. Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence. Science. 2000;290(5495):1368–72. https://doi.org/10.1126/science.290.5495.1368.
Article
CAS
PubMed
Google Scholar
Sperschneider J, Dodds PN. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol Plant Microbe Interact. 2022;35(2):146–56. https://doi.org/10.1094/MPMI-08-21-0201-R.
Article
PubMed
Google Scholar
Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;2(4):456–63. https://doi.org/10.1093/bioinformatics/bti191.
Article
CAS
Google Scholar
Standley K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Testa AC, Oliver RP, Hane JK. OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol Evol. 2016;8(6):2044–64. https://doi.org/10.1093/gbe/evw121.
Article
PubMed
PubMed Central
Google Scholar
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022. https://doi.org/10.1038/s41587-021-01156-3.
Article
PubMed
PubMed Central
Google Scholar
Torres DE, Oggenfuss U, Croll D, Seidl MF. Genome evolution in fungal plant pathogens: looking beyond the two-speed genome model. Fungal Biol Rev. 2020;34(3):136–43. https://doi.org/10.1016/j.fbr.2020.07.001.
Article
Google Scholar
Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev. 2013;37(1):44–66. https://doi.org/10.1111/j.1574-6976.2012.00350.x.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7): e49. https://doi.org/10.1093/nar/gkr1293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Fu H, Shen XX, Ruan R, Rokas A, Li H. Genomic features and evolution of the conditionally dispensable chromosome in the tangerine pathotype of Alternaria alternata. Mol Plant Pathol. 2019;20(10):1425–38. https://doi.org/10.1111/mpp.12848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Tian L, Zhang DD, Song J, Song SS, Yin CM, et al. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahliae. Mol Plant Pathol. 2020;21(5):667–85. https://doi.org/10.1111/mpp.12921.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei M, Wang A, Liu Y, Ma L, Niu X, Zheng A. Identification of the novel effector RsIA_NP8 in Rhizoctonia solani AG1 IA that induces cell death and triggers defense responses in non-host plants. Front Microbiol. 2020;11:1115. https://doi.org/10.3389/fmicb.2020.01115.
Article
PubMed
PubMed Central
Google Scholar
Wolters PJ, Faino L, van den Bosch TBM, Evenhuis B, Visser RGF, Seidl MF, et al. Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani. Mol Plant-Microbe Interact. 2018;31(7):692–4. https://doi.org/10.1094/MPMI-12-17-0309-A.
Article
CAS
PubMed
Google Scholar
Woudenberg JH, Truter M, Groenewald JZ, Crous PW. Large-spored Alternaria pathogens in section Porri disentangled. Stud Mycol. 2014;79(1):1–47. https://doi.org/10.1016/j.simyco.2014.07.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang B, Wang Y, Tian M, Dai K, Zheng W, Liu Z, et al. Fg12 ribonuclease secretion contributes to Fusarium graminearum virulence and induces plant cell death. J Integr Plant Biol. 2021;63(2):365–77. https://doi.org/10.1111/jipb.12997.
Article
CAS
PubMed
Google Scholar
Zhang D, He JY, Haddadi P, Zhu JH, Yang ZH, Ma L. Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence. BMC Microbiol. 2018;18(1):176. https://doi.org/10.1186/s12866-018-1324-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Yang H, Turra D, Zhou S, Ayhan DH, DeIulio GA, et al. The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Commun Biol. 2020;3(1):50. https://doi.org/10.1038/s42003-020-0770-2.
Article
CAS
PubMed
PubMed Central
Google Scholar